
Page 1

Table of Contents

Introduction..26
Overview..27

The ESP8266..28
The ESP32..29
Maturity...29
The ESP8266 specification...30
The ESP32 specification...30
ESP8266 Modules...31

ESP-12...31
ESP-1...35
Adafruit HUZZAH..41
NodeMCU devKit..41
node.IT (aka ESP-210)...43
SparkFun WiFi Shield – ESP8266..43
Espresso Lite..44
Wemos D1..44
Oak by digistump..44

ESP32 Modules...44
ESP32-DevKitC..45

Connecting to the ESP8266...47
WiFi Theory...48
AT Command Programming...50

Commands..51
Installing the latest AT command processor..56

Assembling circuits..57
USB to UART converters...57
Breadboards..59
Power..60
Multi-meter / Logic probe / Logic Analyzer...61
Sundry components..61
Physical construction...61
Recommended setup for programming ESP8266...61
Configuration for flashing the device...64

Programming...65
Boot mode...65
ESP8266 – Software Development Kit (SDK)...66

Include directories...66
ESP32 – Espressif IoT Development framework...67

How IDF works...70
Error handling...72

Page 2

The build environment menu configuration...72
Creating a build environment of the Raspberry Pi 3..75

Compiling..77
ESP32 – Compilation..84
ESP32 – Flashing...86
Loading a program into the ESP8266...87
Programming environments..91
Compilation tools..91

ar..91
esptool.py...91
esptool-ck...93
gcc...96
gen_appbin.py..97
make..98
nodemcu-flasher..98
nm..100
objcopy...100
objdump...100
xxd...100

ESP8266 Linking...101
ESP32 Linking...102
Flashing over the air – FOTA...105
Debugging...109

ESP-IDF logging...109
Logging to UART1...110
Run a Blinky..110
Dumping IP Addresses..112
Exception handling..112
Using a debugger (GDB)...115
Debugging and testing TCP and UDP connections...115

Android – Socket Protocol..115
Android – UDP Sender/Receiver..115
Windows – Hercules...116
Curl...116
Eclipse – TCP/MON...116
httpbin.org..118

ESP8266 Architecture..118
Custom programs...118

WiFi at startup...119
Working with WiFi – ESP8266...119

Scanning for access points...119
Defining the operating mode...120
Handling WiFi events..121
Station configuration...122

Page 3

Connecting to an access point..123
Control and data flows when connecting as a station...123
Being an access point...124
The DHCP server...126
Current IP Address, netmask and gateway...126
WiFi Protected Setup – WPS..127

Working with WiFi – ESP32...127
Working with TCP/IP...131

The espconn architecture...132
TCP..133

Sending and receiving TCP data..136
Flow control..139
TCP Error handling...139

UDP..140
Broadcast with UDP...142

Ping request..143
Name Service...143
Multicast Domain Name Systems...144

Installing Bonjour..145
Working with SNTP...148

ESP-NOW...149
GPIOs...149

Pullup and pull down settings...156
GPIO Interrupt handling..156
Expanding the number of available GPIOs...157

ESP_PCF8574 C library...161
PCF8574 JavaScript Library..162

Working with I2C...163
Working with SPI – Serial Peripheral Interface..165

Hardware SPI...166
The MetalPhreak/ESP8266_SPI_Driver...169

Working with serial..170
ESP8266 Task handling..171
Timers and time...172
ESP32 – Working with Non Volatile Storage...173
Working with memory..174
Working with flash memory...178
Pulse Width Modulation – PWM..180
Analog to digital conversion...181
Sleep modes...183
Watchdog timer...184

Yielding control...185
Security...186
Mapping from Arduino...186

Page 4

Spiffs File System..187
Partner TCP/IP APIs..188

TCP/IP Sockets...189
Handling errors...192
Sockets – accept()..195
Sockets – bind()..196
Sockets – close()..196
Sockets – closesocket()..196
Sockets – connect()..196
Sockets – fcntl()..197
Sockets – freeaddrinfo()..197
Sockets – getaddrinfo()...197
Sockets – gethostbyname()..197
Sockets – getpeername()..197
Sockets – getsockname()...197
Sockets – getsockopt()...197
Sockets – htonl()...198
Sockets – htons()..198
Sockets – inet_ntop()..198
Sockets – inet_pton()..198
Sockets – ioctlsocket()..198
Sockets – listen()..198
Sockets – read()...198
Sockets – recv()..198
Sockets – recvfrom()...199
Sockets – select()...199
Sockets – send()...199
Sockets – sendto()..200
Sockets – setsockopt()..200
Sockets – shutdown()...200
Sockets – socket()..200
Sockets – write()...201
Socket data structures..201

Sockets – struct sockaddr..201
Sockets – struct sockaddr_in...201

Java Sockets...201
WebSockets..204

A WebSocket browser app..205
FreeRTOS WebSocket...206
Mongoose WebSocket..207

Web Servers..208
Mongoose...208

Programming using Eclipse...209
Installing the Eclipse Serial terminal..212

Page 5

Web development using Eclipse..218
Programming using the Arduino IDE..219

Implications of Arduino IDE support...220
Installing the Arduino IDE with ESP8266 support..221
Tips for working in the Arduino environment..227

Initialize global classes in setup()..227
Invoking Espressif SDK API from a sketch..227
Exception handling...228

The SPIFFS file system...228
The mkspiffs command...228

The architecture of the Arduino IDE support..229
Building ESP Arduino apps using the Eclipse IDE...236

Reasons to consider using Eclipse over Arduino IDE...250
Notes on using the Eclipse Arduino package..251

Arduino ESP Libraries...252
The WiFi library...252

WiFi.begin..252
WiFi.beingSmartConfig..253
WiFi.beginWPSConfig..253
WiFi.BSSID..253
WiFi.BSSIDstr..253
WiFi channel..253
WiFi.config...253
WiFi.disconnect..254
WiFi.encryptionType...254
WiFi.gatewayIP..254
WiFi.getNetworkInfo...254
WiFi.hostByName..255
WiFi.hostname...255
WiFi.isHidden...255
WiFi.localIP..255
WiFi.macAddress...255
WiFi.mode..255
WiFi.printDiag...256
WiFi.RSSI...256
WiFi.scanComplete..256
WiFi.scanDelete...257
WiFi.scanNetworks...257
WiFi.smartConfigDone...257
WiFi.softAP..257
WiFi.softAPConfig..258
WiFi.softAPdisconnect...258
WiFi.softAPmacAddress...258
WiFi.softAPIP...258

Page 6

WiFi.SSID...258
WiFi.status...258
WiFi.stopSmartConfig..259
WiFi.subnetMask..259
WiFi.waitForConnectResult..259

WiFiClient...259
WiFiClient...259
WiFiClient.available..259
WiFiClient.connect...260
WiFiClient.connected...260
WiFiClient.flush..260
WiFiClient.getNoDelay...260
WiFiClient.peek..260
WiFiClient.read...260
WiFiClient.remoteIP...260
WiFiClient.remotePort..261
WiFiClient.setLocalPortStart..261
WiFiClient.setNoDelay...261
WiFiClient.status..261
WiFiClient.stop...261
WiFiClient.stopAll...261
WiFiClient.write..261

WiFiServer..262
WiFiServer...262
WiFiServer.available...262
WiFiServer.begin..262
WiFiServer.getNoDelay..262
WiFiServer.hasClient..262
WiFiServer.setNoDelay..263
WiFiServer.status...263
WiFiServer.write...263

IPAddress...263
ESP8266WebServer...263

ESP8266WebServer..266
ESP8266WebServer.arg..266
ESP8266WebServer.argName...266
ESP8266WebServer.args..266
ESP8266WebServer.begin...266
ESP8266WebServer.client...266
ESP8266WebServer.handleClient..267
ESP8266WebServer.hasArg..267
ESP8266WebServer.method..267
ESP8266WebServer.on...267
ESP8266WebServer.onFileUpload..268

Page 7

ESP8266WebServer.onNotFound..268
ESP8266WebServer.send..268
ESP8266WebServer.sendContent...268
ESP8266WebServer.sendHeader..268
ESP8266WebServer.setContentLength...268
ESP8266WebServer.streamFile...269
ESP8266WebServer.upload...269
ESP8266WebServer.uri...269

ESP8266mDNS library...269
MDNS.addService..269
MDNS.begin...269
MDNS.update...269

I2C – Wire...270
Wire.available...270
Wire.begin..270
Wire.beginTransmission...271
Wire.endTransmission..271
Wire.flush...271
Wire.onReceive..272
Wire.onReceiveService..272
Wire.onRequest...272
Wire.onRequestService..272
Wire.peek...272
Wire.pins..273
Wire.read...273
Wire.requestFrom..273
Wire.setClock...273
Wire.write...274

Ticker library...274
Ticker...274
attach...274
attach_ms..275
detach..275
once...275
once_ms..275

EEPROM library...275
EEPROM.begin..276
EEPROM.commit...276
EEPROM.end...276
EEPROM.get..276
EEPROM.getDataPtr..276
EEPROM.put..276
EEPROM.read...276
EEPROM.write...276

Page 8

SPIFFS...277
SPIFFS.begin...277
SPIFFS.open..277
SPIFFS.openDir...277
SPIFFS.remove..277
SPIFFS.rename...278
File.available..278
File.close..278
File.flush...278
File.name...278
File.peek..278
File.position..278
File.read...279
File.seek...279
File.size..279
File.write...279
Dir.fileName..279
Dir.next...279
Dir.open..279
Dir.openDir...280
Dir.remove..280
Dir.rename..280

ESP library..280
ESP.deepSleep..280
ESP.eraseConfig..280
ESP.getBootMode..280
ESP.getBootVersion...280
ESP.getChipId..280
ESP.getCpuFreqMHz...280
ESP.getCycleCount..280
ESP.getFlashChipId...280
ESP.getFlashChipMode...281
ESP.getFlashChipRealSize..281
ESP.getFlashChipSize...281
ESP.getFlashChipSizeByChipId...281
ESP.getFlashChipSpeed..281
ESP.getFreeHeap...281
ESP.getFreeSketchSpace..281
ESP.getResetInfo...281
ESP.getResetInfoPtr...281
ESP.getSdkVersion..281
ESP.getSketchSize...282
ESP.getVcc..282
ESP.reset...282

Page 9

ESP.restart...282
ESP.updateSketch..282
ESP.wdtDisable..282
ESP.wdtEnable...282
ESP.wdtFeed..282

String library..283
Constructor...283
String.c_str...283
String.reserve...283
String.length...283
String.concat..283
String.equalsIgnoreCase..283
String.startsWith...283
String.endsWith..284
String.charAt..284
String.setCharAt...284
String.getBytes...284
String toCharArray...284
String.indexOf..284
String.lastIndexOf...284
String.substring..284
String.replace...284
String.remove...284
String.toLowerCase..284
String.toUpperCase..284
String.trim...285
String.toInt..285
String.toFloat..285

Programming with JavaScript..285
Smart.js...286

Smart.js GPIO...287
Setting up an HTTP server...288
Debugging..289

Espruino..289
Editing and deploying code...290
Working with variables..290
Booting Espruino..290
WiFi access..290
Writing network socket applications using Espruino..291

Writing a REST client using Espruino...292
Writing a Web Server using Espruino...293

Working with GPIO...295
Working with I2C and JavaScript..295
Debugging JavaScript...296

Page 10

Editing JavaScript...296
Espruino ESP8266 Libraries...297
Core JavaScript capabilities..298

Running code at intervals...298
Working with GPIO...299
SPI...299

Key differences from JavaScript...300
Building Espruino..300

Programming with Lua...301
ESPlorer IDE...301
GPIO with Lua...301
WiFi with Lua...302
Networking with Lua..302

Programming with Basic..302
Integration with Web Apps...302

REST Services..302
REST protocol..303
ESP8266 as a REST client...303

Making a REST request using Mongoose..303
ESP8266 as a REST service provider..304

Tasker..304
AutoRemote..304
DuckDNS..306

Mobile apps...307
Blynk...307

Sample Snippets..307
Forming a TCP connection..307

Sample applications...308
Sample – Light an LED based on the arrival of a UDP datagram..308
Sample – Ultrasonic distance measurement...310
Sample – WiFi Scanner...313
Sample – Working with micro SD cards...313
Sample – Playing audio from an event..313
Sample – A changeable mood light...313
Sample – Bootstrapping networking..318

Sample Libraries..318
Function list...318

authModeToString...318
checkError..319
delayMilliseconds..319
dumpBSSINFO...319
dumpEspConn..319
dumpRestart...319
dumpState..319

Page 11

errorToString...320
eventLogger..320
eventReasonToString..320
flashSizeAndMapToString...320
setAsGpio...320
setupBlink...320
toHex..321

Using FreeRTOS...321
The architecture of a task in FreeRTOS..322
Lists within RTOS..324
ESP8266 – Building apps for RTOS..324
Consoles with RTOS...326
Debugging tips..326

Developing solutions on Linux...327
Building a Linux environment..327

API Reference...336
FreeRTOS API reference..336

eTaskGetState..336
pcTaskGetName...336
xTaskCreate..336
xTaskCreatePinnedToCore...337
vTaskDelay...338
vTaskDelayUntil..338
vTaskDelete..338
xTaskGetCurrentTaskHandle..339
xTaskGetTickCount...339
vTaskList...339
vTaskPrioritySet..339
vTaskResume...339
xTaskResumeAll...339
vTaskResumeFromISR...339
vTaskSuspend..340
vTaskSuspendAll..340
xQueueCreate..340
vQueueDelete...340
xQueuePeek...340
xQueueReceive..340
xQueueSend...340
xQueueSendToBack...341
xQueueSendToFront...341
vSemaphoreCreateBinary...341
xSemaphoreCreateCounting..341
vSemaphoreGive..341
xSemaphoreGiveFromISR..341

Page 12

vSemaphoreTake..341
pvPortMalloc...341
pvPortFree..341
List Processing...341

vListInitialise...341
vListInitialiseItem..341
vListInsert...342
vListInsertEnd..342

lwip Reference...342
Sockets...342

Timer functions..343
os_delay_us..343
os_timer_arm..343
os_timer_disarm...344
os_timer_setfn..344
system_timer_reinit...345
os_timer_arm_us..345
hw_timer_init...345
hw_timer_arm...345
hw_timer_set_func..345

System Functions..345
system_restore...345
system_restart..345
system_init_done_cb..345
system_get_chip_id..346
system_get_vdd33..346
system_adc_read...346
system_deep_sleep..346
system_deep_sleep_set_option..347
system_phys_set_rfoption..347
system_phys_set_max_tpw..347
system_phys_set_tpw_via_vdd33..347
system_set_os_print...347
system_print_meminfo..347
system_show_malloc..348
system_get_free_heap_size...348
system_os_task..348
system_os_post..349
system_get_time...350
system_get_rtc_time...350
system_rtc_clock_cali_proc..350
system_rtc_mem_write...350
system_rtc_mem_read...351
system_uart_swap..351

Page 13

system_uart_de_swap..351
system_get_boot_version...351
system_get_userbin_addr...351
system_get_boot_mode..351
system_restart_enhance...352
system_update_cpu_freq..352
system_get_cpu_freq...352
system_get_flash_size_map...352
system_get_rst_info..353
system_get_sdk_version()..353
system_soft_wdt_feed..353
system_soft_wdt_stop..353
system_soft_wdt_restart...354
os_memset...354
os_memcmp...354
os_memcpy..354
os_malloc...355
os_calloc...355
os_realloc...355
os_zalloc...355
os_free..356
os_bzero...356
os_delay_us..356
os_printf..357
os_install_putc1..357
os_random..358
os_get_random...358
os_strlen...358
os_strcat...358
os_strchr...358
os_strcmp...359
os_strcpy..359
os_strncmp...359
os_strncpy..359
os_sprintf..359
os_strstr..360

SPI Flash...360
spi_flash_get_id..360
spi_flash_erase_sector...360
spi_flash_read..361
spi_flash_set_read_func...361
system_param_save_with_protect..361
spi_flash_write..361
system_param_load...362

Page 14

WiFi – ESP-IDF...362
esp_wifi_clear_fast_connect...362
esp_wifi_connect..362
esp_wifi_deinit..362
esp_wifi_disconnect..363
esp_wifi_free_station_list..363
esp_wifi_get_ap_list...363
esp_wifi_get_ap_num...363
esp_wifi_get_auto_connect..364
esp_wifi_get_bandwidth..364
esp_wifi_get_channel...364
esp_wifi_get_config..364
esp_wifi_get_country..364
esp_wifi_get_mac...364
esp_wifi_get_mode...364
esp_wifi_get_promiscuous..365
esp_wifi_get_protocol...365
esp_wifi_get_ps..365
esp_wifi_get_station_list...365
esp_wifi_init..365
esp_wifi_kick_station..366
esp_wifi_reg_rxcb...366
esp_wifi_scan_start..366
esp_wifi_scan_stop..366
esp_wifi_set_auto_connect...367
esp_wifi_set_bandwidth..367
esp_wifi_set_channel..367
esp_wifi_set_config..367
esp_wifi_set_country..369
esp_wifi_set_mac...369
esp_wifi_set_mode...369
esp_wifi_set_promiscuous_rx_cb...370
esp_wifi_set_promiscuous..370
esp_wifi_set_protocol...370
esp_wifi_set_ps..370
esp_wifi_set_storage..370
esp_wifi_set_vendor_ie..370
esp_wifi_set_vendor_ie_cb...370
esp_wifi_start..370
esp_wifi_stop..371

WiFi – ESP8266..371
wifi_fpm_close..371
wifi_fpm_do_sleep..371
wifi_fpm_do_wakeup..371

Page 15

wifi_fpm_get_sleep_type..371
wifi_fpm_open...371
wifi_fpm_set_sleep_type...371
wifi_fpm_set_wakeup_cb..371
wifi_get_channel...371
wifi_get_ip_info...371
wifi_get_macaddr..372
wifi_get_opmode...372
wifi_get_opmode_default..372
wifi_get_phy_mode...373
wifi_get_sleep_type..373
wifi_get_user_fixed_rate...373
wifi_get_user_limit_rate_mask..373
wifi_set_broadcast_if..373
wifi_get_broadcast_if..373
wifi_set_sleep_type..374
wifi_promiscuous_enable..374
wifi_promiscuous_set_mac...374
wifi_register_rfid_locp_recv_cb...374
wifi_register_send_pkt_freedom_cb...374
wifi_register_user_ie_manufacturer_recv_cb..374
wifi_rfid_locp_recv_close..374
wifi_rfid_locp_recv_open..374
wifi_send_pkt_freedom...374
wifi_set_channel...374
wifi_set_event_handle_cb...374
wifi_set_ip_info...374
wifi_set_macaddr..375
wifi_set_opmode...375
wifi_set_opmode_current..375
wifi_set_phy_mode...376
wifi_set_promiscuous_rx_cb...376
wifi_set_sleep_type..376
wifi_set_user_fixed_rate...376
wifi_set_user_ie..377
wifi_set_user_limit_rate_mask..377
wifi_set_user_rate_limit..377
wifi_set_user_sup_rate...377
wifi_status_led_install...377
wifi_status_led_uninstall...378
wifi_unregister_rfid_locp_recv_cb...378
wifi_unregister_send_pkt_freedom_cb...378
wifi_unregister_user_ie_manufacturer_recv_cb..378

WiFi Station...378

Page 16

wifi_station_ap_change..378
wifi_station_ap_number_set...379
wifi_station_connect...379
wifi_station_dhcpc_start..379
wifi_station_dhcpc_status...380
wifi_station_dhcpc_stop..380
wifi_station_disconnect...380
wifi_station_get_ap_info...381
wifi_station_get_auto_connect..381
wifi_station_get_config..381
wifi_station_get_config_default...381
wifi_station_get_connect_status...382
wifi_station_get_current_ap_id...382
wifi_station_get_hostname...383
wifi_station_get_reconnect_policy..383
wifi_station_get_rssi...383
wifi_station_scan..383
wifi_station_set_auto_connect..385
wifi_station_set_cert_key..385
wifi_station_clear_cert_key...385
wifi_station_set_config..385
wifi_station_set_config_current...386
wifi_station_set_reconnect_policy...386
wifi_station_set_hostname..386

WiFi SoftAP...387
wifi_softap_dhcps_start..387
wifi_softap_dhcps_status..387
wifi_softap_dhcps_stop...388
wifi_softap_free_station_info..388
wifi_softap_get_config..388
wifi_softap_get_config_default..389
wifi_softap_get_dhcps_lease..389
wifi_softap_get_dhcps_lease_time...389
wifi_softap_get_station_info..389
wifi_softap_get_station_num..390
wifi_softap_reset_dhcps_lease_time..390
wifi_softap_set_config...390
wifi_softap_set_config_current...391
wifi_softap_set_dhcps_lease..391
wifi_softap_set_dhcps_lease_time...391
wifi_softap_dhcps_offer_option...392

WiFi WPS..392
wifi_wps_enable...392
wifi_wps_disable...393

Page 17

wifi_wps_start...393
wifi_set_wps_cb..393

Upgrade APIs..393
system_upgrade_flag_check..393
system_upgrade_flag_set...394
system_upgrade_reboot...394
system_upgrade_start..394
system_upgrade_userbin_check..394
wifi_promiscuous_enable..394
wifi_promiscuous_set_mac...394
wifi_promiscuous_rx_cb..394
wifi_get_channel...395
wifi_set_channel...395

Smart config APIs..395
smartconfig_start..395
smartconfig_stop..395

SNTP API..395
sntp_setserver..395
sntp_getserver..395
sntp_setservername...396
sntp_getservername...396
sntp_init..396
sntp_stop..397
sntp_get_current_timestamp..397
sntp_get_real_time...397
sntp_set_timezone..397
sntp_get_timezone...398

Generic TCP/UDP APIs...398
espconn_delete..398
espconn_dns_setserver..399
espconn_gethostbyname..399
espconn_port..400
espconn_regist_sentcb...400
espconn_regist_recvcb...400
espconn_send..401
espconn_sendto...401
ipaddr_addr..401
IP4_ADDR..402
IP2STR...402

TCP APIs...402
espconn_abort..402
espconn_accept..403
espconn_get_connection_info..403
espconn_connect..404

Page 18

espconn_disconnect...404
espconn_regist_connectcb...405
espconn_regist_disconcb...405
espconn_regist_reconcb...405
espconn_regist_write_finish..406
espconn_set_opt..407
espconn_clear_opt...407
espconn_regist_time...408
espconn_set_keepalive..408
espconn_get_keepalive..409
espconn_secure_accept...409
espconn_secure_ca_disable..409
espconn_secure_ca_enable...409
espconn_secure_set_size..409
espconn_secure_get_size..409
espconn_secure_delete..409
espconn_secure_connect...409
espconn_secure_send..410
espconn_secure_disconnect..410
espconn_tcp_get_max_con..410
espconn_tcp_set_max_con..410
espconn_tcp_get_max_con_allow..410
espconn_tcp_set_max_con_allow..410
espconn_recv_hold...410
espconn_recv_unhold...411

UDP APIs...411
espconn_create..411
espconn_igmp_join...411
espconn_igmp_leave..411

ping APIs...412
ping_start..412
ping_regist_recv...412
ping_regist_sent...412

mDNS APIs...413
espconn_mdns_init...413
espconn_mdns_close...413
espconn_mdns_server_register..413
espconn_mdns_server_unregister..413
espconn_mdns_get_servername..413
espconn_mdns_set_servername..413
espconn_mdns_set_hostname...414
espconn_mdns_get_hostname...414
espconn_mdns_disable..414
espconn_mdns_enable...414

Page 19

GPIO – ESP32..414
gpio_config...414
gpio_get_level...415
gpio_intr_enable...416
gpio_intr_disable...416
gpio_isr_register...416
gpio_set_direction...416
gpio_set_intr_type..416
gpio_set_level...417
gpio_set_pull_mode..417
gpio_wakeup_enable..417
gpio_wakeup_disable...417

GPIO – ESP8266..417
PIN_PULLUP_DIS..419
PIN_PULLUP_EN...419
PIN_FUNC_SELECT..420
GPIO_ID_PIN...420
GPIO_OUTPUT_SET...420
GPIO_DIS_OUTPUT..420
GPIO_INPUT_GET...421
gpio_output_set..421
gpio_input_get..421
gpio_intr_handler_register..422
gpio_pin_intr_state_set...422
gpio_intr_pending...422
gpio_intr_ack..423
gpio_pin_wakeup_enable...423
gpio_pin_wakeup_disable...423

UART APIs..424
UART_CheckOutputFinished..424
UART_ClearIntrStatus..424
UART_ResetFifo...424
UART_SetBaudrate..424
UART_SetFlowCtrl..424
UART_SetIntrEna...424
UART_SetLineInverse..424
UART_SetParity...424
UART_SetPrintPort...425
UART_SetStopBits...425
UART_SetWordLength...425
UART_WaitTxFifoEmpty...425
uart_init...425
uart0_tx_buffer..426
uart0_sendStr...426

Page 20

uart0_rx_intr_handler..426
I2C Master APIs..427

i2c_master_checkAck...427
i2c_master_getAck...427
i2c_master_gpio_init...427
i2c_master_init..427
i2c_master_readByte..427
i2c_master_send_ack...427
i2c_master_send_nack...428
i2c_master_setAck...428
i2c_master_start...428
i2c_master_stop...428
i2c_master_writeByte..428

SPI APIs..428
cache_flush..428
spi_lcd_9bit_write...428
spi_mast_byte_write...428
spi_byte_write_espslave...428
spi_slave_init..429
spi_slave_isr_handler...429
hspi_master_readwrite_repeat...429
spi_test_init...429

PWM APIs...429
pwm_init...429
pwm_start...430
pwm_set_duty...430
pwm_get_duty..430
pwm_set_period...430
pwm_get_period...431
get_pwm_version..431
set_pwm_debug_en(uint8 print_en)..431
Bit twiddling..431

Non Volatile Storage..431
nvs_close..431
nvs_commit..432
nvs_dump...432
nvs_erase_all..432
nvs_erase_key..432
nvs_flash_init..432
nvs_get_blob..432
nvs_get_str...432
nvs_get_i8..432
nvs_get_i16..433
nvs_get_i32..433

Page 21

nvs_get_i64..433
nvs_get_u8...433
nvs_get_u16...433
nvs_get_u32...433
nvs_get_u64...433
nvs_open..433
nvs_set_blob...433
nvs_set_str...434
nvs_set_i8..434
nvs_set_i16..434
nvs_set_i32..434
nvs_set_i64..434
nvs_set_u8...434
nvs_set_u16...434
nvs_set_u32...434
nvs_set_u64...434

ESP Now...435
esp_now_add_peer..435
esp_now_deinit...435
esp_now_del_peer...435
esp_now_get_peer_key..435
esp_now_get_peer_role...435
esp_now_get_self_role...435
esp_now_init...435
esp_now_register_recv_cb...435
esp_now_register_send_cb..435
esp_now_send..435
esp_now_set_kok...435
esp_now_set_peer_role..435
esp_now_set_peer_key..435
esp_now_set_self_role...435
esp_now_unregister_recv_cb...435
esp_now_unregister_send_cb..435

SPIFFS..435
esp_spiffs_deinit...436
esp_spiffs_init...436
SPIFFS_check..437
SPIFFS_clearerr...437
SPIFFS_close...437
SPIFFS_closedir...438
SPIFFS_creat...438
SPIFFS_erase_deleted_block..438
SPIFFS_errno...438
SPIFFS_fflush...438

Page 22

SPIFFS_format...438
SPIFFS_fremove..439
SPIFFS_fstat..439
SPIFFS_gc...439
SPIFFS_gc_quick...439
SPIFFS_info...439
SPIFFS_lseek...440
SPIFFS_mount...440
SPIFFS_mounted...441
SPIFFS_open...441
SPIFFS_open_by_dirent...442
SPIFFS_opendir...442
SPIFFS_read..443
SPIFFS_readdir..443
SPIFFS_remove...443
SPIFFS_rename...444
SPIFFS_stat...444
SPIFFS_unmount...444
SPIFFS_write..444

Lib-C..444
atoi..445
atol..445
bzero...445
calloc..445
free...445
malloc...445
memcmp...445
memcpy..445
memmove...445
memset...445
os_get_random...445
os_random..446
printf..446
puts...446
rand..446
realloc...446
snprintf..446
sprintf..446
strcat...446
strchr...446
strcmp...447
strcpy..447
strcspn..447
strdup..447

Page 23

strlen...447
strncat...447
strncmp...447
strncpy..447
strrchr...447
strspn..447
strstr..448
strtok...448
strtok_r..448
strtol..448
zalloc..448

Data structures..448
esp_spiffs_config..448
station_config..448
struct softap_config...449
struct station_info..449
struct dhcps_lease..450
struct bss_info...450
struct ip_info...451
struct rst_info..451
struct espconn..452
esp_tcp...453
esp_udp..453
struct ip_addr..453
ipaddr_t...454
struct ping_option...454
struct ping_resp..454
struct mdns_info...455
enum phy_mode...455
GPIO_INT_TYPE..455
System_Event_t..456
espconn error codes...458
STATUS..458

Reference materials...460
C++ Programming...460

Simple class definition..460
Lambda functions...460
Ignoring warnings...460

Eclipse...461
ESPFS breakdown..461

EspFsInit...461
espFsOpen...461
espFsClose...461
espFsFlags...461

Page 24

espFsRead...462
mkespfimage..462

ESPHTTPD breakdown...462
httpdInit...462
httpdGetMimetype..463
httpdUrlDecode...463
httpdStartResponse..463
httpdSend...463
httpdRedirect..464
httpdHeader..464
httpdGetHeader..464
httpdFindArg...464
httpdEndHeaders..464

Makefiles...465
Forums..467
Reference documents...467
Github..468

Github quick cheats..468
SDK...469

Single board computer comparisons..469
Heroes...470

Max Filippov – jcmvbkbc – GCC compiler for Xtensa..470
Ivan Grokhotkov – igrr – Arduino IDE for ESP8266 development..470
jantje – Arduino Eclipse...471
Richard Sloan – ESP8266 Community owner...471
Mikhail Grigorev – CHERTS – Eclipse for ESP8266 development......................................471
Mmiscool – Basic Interpreter...472

Areas to Research...472

Page 25

Introduction
Howdy Folks,

I've been working in the software business for over 30 years but until recently, hadn't been playing directly
with Micro Processors. When I bought a Raspberry PI and then an Arduino, I'm afraid I got hooked. In
my house I am surrounded by computers of all shapes, sizes and capacities … any one of them with
orders of magnitude more power than any of these small devices … however, I still found myself
fascinated.

When I stumbled across the ESP8266 in early 2015, it piqued my interest. I hadn't touched C
programming in decades (I'm a Java man these days). As I started to read what was available in the way
of documentation from the excellent community surrounding the device, I found that there were only small
pockets of knowledge. The best source of information was (and still is) the official PDFs for the SDK from
Espressif (the makers of the ESP8266) but even that is quite "light" on examples and background. As I
studied the device, I started to make notes and my pages of notes continued to grow and grow.

This book (if we want to call it that) is my collated and polished version of those notes. Rather than keep
them to myself, I offer them to all of us in the ESP8266 community in the hope that they will be of some
value. My plan is to continue to update this work as we all learn more and share what we find in the
community forums. As such, I will re-release the work at regular intervals so please check back at the
book's home page for the latest. Towards the end of 2015, a new device called the ESP32 was
mentioned to be in development. Whether this will be a successor or an addition to the ESP8266 remains
to be seen but we will also start to cover that device within this book too.

As you read, make sure that you fully understand that there are undoubtedly inaccuracies, errors in my
understanding and errors in my writing. Only by feedback and time will we be able to correct those.
Please forgive the grammatical errors and spelling mistakes that my spell checker hasn't caught.

For questions or comments on the book, please post to this forum thread:

http://www.esp8266.com/viewtopic.php?f=5&t=4326

The home page for the book is:

http://neilkolban.com/tech/esp8266/

Please don't email me directly with technical questions. Instead, let us use the forum and ask and answer
the questions as a great community of ESP8266 minded enthusiasts, hobbyists and professionals.

 Neil Kolban
Texas, USA

Page 26

http://neilkolban.com/tech/esp8266/
http://www.esp8266.com/viewtopic.php?f=5&t=4326

Overview
A micro controller is an integrated circuit that is capable of running programs. There are
many instances of those on the market today from a variety of manufacturers. The
prices of these micro controllers keeps falling. In the hobbyist market, an open source
architecture called "Arduino" that uses the Atmel range of processors has caught the
imagination of countless folks. The boards containing these Atmel chips combined with
a convention for connections and also a free set of development tools has lowered the
entry point for playing with electronics to virtually nill. Unlike a PC, these processors are
extremely low end with low amounts of ram and storage capabilities. They won't be
replacing the desktop or laptop any time soon. For those who want more "oomph" in
their processors, the folks over at Raspberry PI have developed a very cheap (~$45)
board that is based on the ARM processors that has much more memory and uses
micro SD for persistent data storage. These devices run a variant of the Linux
operating system. I'm not going to talk further about the Raspberry PI as it is in the
class of "computer" as opposed to microprocessor.

These micro controller and architectures are great and there will always be a place for
them. However, there is a catch … and that is networking. These devices have an
amazing set of capabilities including direct electrical inputs and outputs (GPIOs) and
support for a variety of protocols including SPI, I2C, UART and more, however, none of
them so far come with wireless networking included.

No question (in my mind) that the Arduino has captured everyone’s attention. The
Arduino is based on the Atmel chips and has a variety of physical sizes in its open
hardware footprints. The primary micro controller used is the ATmega328. One can
find instances of these raw processors on ebay for under $2 with fully constructed
boards containing them for under $3. This is 10-20 times cheaper than the Raspberry
PI. Of course, one gets dramatically less than the Raspberry PI so comparison can
become odd … however if what one wants to do is tinker with electronics or make some
simple devices that connect to LEDs, switches or sensors, then the functional features
needed become closer.

Between them, the Arduino and the Raspberry PI appear to have all the needs covered.
If that were the case, this would be a very short book. Let us add the twist that we
started with … wireless networking. To have a device move a robot chassis or flash
LED patterns or make some noises or read data from a sensor and beep when the
temperature gets too high … these are all great and worthy projects. However, we are
all very much aware of the value of the Internet. Our computers are Internet connected,
our phones are connected, we watch TV (Netflix) over the Internet, we play games over
the Internet, we socialize (??) over the Internet … and so on. The Internet has become

Page 27

such a basic commodity that we would laugh if someone offered us a new computer or
a phone that lacked the ability to go "on-line".

Now imagine what a micro controller with native wireless Internet could do for us? This
would be a processor which could run applications as well as or better than an Arduino,
which would have GPIO and hardware protocol support, would have RAM and flash
memory … but would have the killer new feature that it would also be able to form
Internet connections. And that … simply put … is what the ESP8266 device is. It is an
alternative microprocessor to the ones already mentioned but also has WiFi and TCP/IP
(Transmission Control Protocol / Internet Protocol) support already built in. What is
more, it is also not much more expensive than an Arduino. Searching ebay, we find
ESP8266 boards under $3.

The ESP8266
The ESP8266 is the name of a micro controller designed by Espressif Systems.
Espressif is a Chinese company based out of Shanghai. The ESP8266 advertises itself
as a self-contained WiFi networking solution offering itself as a bridge from existing
micro controller to WiFi … and … is also capable of running self contained applications.

Volume production of the ESP8266 didn't start until the beginning of 2014 which means
that, in the scheme of things, this is a brand new entry in the line-up of processors. And
… in our technology hungry world, new commonly equates to interesting. A couple of
years after IC production, 3rd party OEMs are taking these chips and building "breakout
boards" for them. If I were to hand you a raw ESP8266 straight from the factory, it is
unlikely we would know what to do with one. They are very tiny and virtually impossible
for hobbyists to attach wires to allow them to be plugged into breadboards. Thankfully,
these OEMs bulk purchase the ICs, design basic circuits, design printed circuit boards
and construct pre-made boards with the ICs pre-attached immediately ready for our
use. It is these boards that capture our interest and that we can buy for a few dollars on
ebay.

There are a variety of board styles available. The two that I am going to focus on have
been given the names ESP-1 and ESP-12. It is important to note that there is only one
ESP8266 processor and it is this processor that is found on ALL breakout boards. What
distinguishes one board from another is the number of GPIO pins exposed, the amount
of flash memory provided, the style of connector pins and various other considerations
related to construction. From a programming perspective, they are all the same.

Page 28

The ESP32
Following on from the success of the ESP8266, Espressif have announced the
existence of a new device called the ESP32. At the time of writing, this device has not
yet been formally released however I have been supplied an evaluation copy that is in
beta stage. This will allow me to cover the ESP32 programming but please realize
these are extremely early days. As time passes and more experience with ESP32
grows and especially when it becomes generally available, rest assured that the book
will be updated to reflect all combined knowledge of both ESP8266 and ESP32.

What we do know now is that the ESP32 includes Blue Tooth Low Energy (BTLE)
support. The beta releases do not yet have BTLE support. It also has 8 channel of
analog to digital conversion. It is believed that these will measure 0-4v with a
granularity of 12 bits (0-4095).

One of the most exciting aspects of the ESP32 is that it has moved from a single
80MHz core (ESP8266) to dual 160MHz cores. The current beta only supports a single
core at this time.

Maturity
The ESP8266 is a new device in the arena. It has been around since only the summer
of 2014 but has already been shipping production volumes in the tens of millions.
Everybody and everything has to start somewhere. This means there is a whole new
wealth of territory to be explored and new features and functions and usage patterns to
be discovered. On the down side, it does not yet have the richness of tutorials, samples
and videos that accompany other micro controller systems. Its documentation is not
brilliant and some of the core questions on its usage are still being examined. How this
sits with you is a function of your intent in tinkering in this area. If you want to follow the
paths that have been followed many times before, other processors will be more
attractive. However if you like a sense of adventure and getting in on the "ground floor"
of a new arrival, the challenges that we (the ESP8266 community) are trying to solve
may actively excite you rather than dissuade you.

It is also a major reason that folks like myself spend many, many hours studying and
documenting what we find … so others can hopefully build on what has been learned
without re-inventing the wheel.

Could the excitement about ESP8266 processors fizzle? Yes … these devices may just
be a flash in the pan and a few years from now, the hobbyist won't give a second
thought about them. But what I ask you is to approach the device with an open mind.

Page 29

The ESP8266 specification
When we approach a new electronics device, we like to know about its specification.
Here are some of the salient points:

Voltage 3.3V

Current consumption 10uA – 170mA

Flash memory attachable 16MB max (512K normal)

Processor Tensilica L106 32 bit

Processor speed 80-160MHz

RAM 32K + 80K

GPIOs 17 (multiplexed with other functions)

Analog to Digital 1 input with 1024 step (10 bit)
resolution

802.11 support b/g/n/d/e/i/k/r

Maximum concurrent TCP connections 5

The question of determining how long an ESP8266 can run on batteries is an interesting
one. The current consumption is far from constant. When transmitting at full power, it
can consume 170mA but when in a deep sleep, it only need 10uA. That is quite a
difference. This means that the runtime of an ESP8266 on a fixed current reservoir is
not just a function of time but also of what it is doing during that time … and that is a
function of the program deployed upon it.

The ESP8266 is designed to be used with a partner memory module and this is most
commonly flash memory. Most of the modules come with some flash associated with
them. Realize that flash has a finite number of erases per page before something fails.
They are rated at about 10,000 erases. This is not normally an issue for configuration
change writes or daily log writes … but if your application is continually writing new data
extremely fast, then this may be an issue and your flash memory will fail.

The ESP32 specification

Page 30

Voltage 3.3V

Current consumption Unknown

Flash memory attachable Module based

Processor Tensilica L108 32 bit

Processor speed Dual 160MHz

RAM 520K

GPIOs Unknown

Analog to Digital Unknown

802.11 support 11b/g/n/e/i

Maximum concurrent TCP connections Unknown

SPI 4

I2S 2

I2C 2

UART 3

The ESP32 is a dual core processor running the Xtensa LX6 instructions. The cores
are called "PRO_CPU" and "APP_CPU".

ESP8266 Modules
The ESP8266 integrated circuit comes in a small package, maybe five millimeters
square. Obviously, unless you are a master solderer you aren't going to do much with
that. The good news is that a number of vendors have created breakout boards that
make the job much easier for you. Here we list some of the more common modules.

ESP-12
The current most popular and flexible configuration available today is called the ESP-
12. It exposes the most GPIO pins for use. The basic ESP-12 module really needs its
own expander module to make it breadboard and 0.1" strip board friendly.

Here is what an ESP-12 device looks like when mounted on a breadboard extender
board:

Page 31

The pin out of the extender board looks as follows:

The ESP-12 has a blue surface mounted LED on the upper right. This LED flashes
when there is UART traffic.

Here is a description of the various pins:

Name Description

VCC 3.3V.

GPIO 13 Also used for SPI MOSI.

GPIO 12 Also used for SPI MISO.

GPIO 14 Also used for SPI Clock.

GPIO 16

CH_PD Chip enable. Should be high for normal operation.

• 0 – Disabled

• 1 – Enabled

ADC Analog to digital input

REST External reset.

• 0 – Reset

• 1 – Normal

TXD UART 0 transmit.

RXD UART 0 Receive.

GPIO 4 Regular GPIO.

GPIO 5 Regular GPIO.

GPIO 0 Should be high on boot, low for flash update.

GPIO 2 Should be high on boot.

GPIO 15 Should be low on boot and flash.

GND Ground.

Page 32

Here is a schematic for connecting an instance:

Next we see an image of this circuit built out on a breadboard.

Page 33

If we just wish to use our breakout board, we have the following when mounted on a
breadboard, we can have the following setup:

This gives us two sets of 8 pin connectors. The first set is:

Page 34

Set 1

Pin Color

GND Orange

GPIO15 Yellow

GPIO2 Green

GPIO0 Blue

GPIO5 Purple

GPIO4 Grey

RXD White

TXD Black

The second set is:

Set 2

Pin Color

VCC Orange

GPIO13 Yellow

GPIO12 Green

GPIO14 Blue

GPIO16 Purple

CH_PD Grey

ADC White

REST Black

ESP-1
The ESP-1 board is an ESP8266 on an 8 pin board. It is not at all breadboard friendly
but fortunately we can make adapters for it extremely easily. The ESP-1 was one of the
first boards available and other than price, should all but be discounted. It only provides
a small subset of the pin-outs provided by other boards. However, the ESP-1 was
massively volume produced and still maintains one of the smallest physical footprints. If
you only need a couple of I/Os or need a very tiny size, there may still be some value in
this selection.

Page 35

The pin out of the device is as follows:

Function Color Description

TX Transmit

RX Receive. Always use a level converter for incoming
data. This device is not 5V tolerant.

CH_PD Chip enable. Should be high for normal operation.

• 0 – Disabled

• 1 – Enabled

RST External reset.

• 0 – Reset

• 1 – Normal

GPIO 0 Should be high on boot, low for flash update.

GPIO 2 Should be high on boot.

VCC 3.3V

GND Ground

A simple circuit is shown below. Note that the TX and RX pins are shown not
connected. Remember to always use a level converter for the RX pin into the device
as it is not 5V tolerant.

here is an alternate circuit:

Page 36

Here is the circuit on a breadboard that was demonstrated to work just fine.

Page 37

If we wish to add grounding buttons for RESET and GPIO 0, the following are some
circuits:

Page 38

When we press the reset button, it makes sense for that just to be a momentary press.
Here is a circuit for that:

Page 39

The default serial connection speed seems to be 115200.

See also:

● YouTube: ESP8266 ESP-01 Pin details, Getting started
● YouTube: ESP8266 ESP-01 and USB to serial converter connections (CP2102 Silicon Labs)

Page 40

https://www.youtube.com/watch?v=lnP1NPB4zAE
https://www.youtube.com/watch?v=CxryVakvTg4

Adafruit HUZZAH

The Adafruit HAZZAH is a breakout board for the ESP8266. It is the most breadboard
friendly of the solutions I have encountered so far.

See also:

● Adafruit HUZZAH

NodeMCU devKit
This module comes with a built in USB connector and a rich assortment of pin-outs. It is
also immediately breadboard friendly (if one straddles two boards).

The pin mapping on this device is as follows:

Page 41

https://learn.adafruit.com/adafruit-huzzah-esp8266-breakout

There are currently two flavors of the NodeMCU board called v0.9 and v1.0. Here are
the primary differences:

Function NodeMCU v0.9 NodeMCU v1.0

USB CH340 based CP2012 based

ESP8266 ESP-12E ESP-12E

When connected via USB on a Windows machine, the Serial connector shows as "USB-
SERIAL CH340".

Page 42

If for some reason the USB serial connector does not show up, search the internet for
drivers for the CH340G for your PC's operating system.

This device is not especially single breadboard friendly (although it may leave one row
of exposed pins) but fits beautifully on two breadboards that are side by side. I
recommend adding a second USB→UART connected as follows:

• UART GND → GND

• UART RX → GPIO2 (TXD1) [NodeMCU: D4]

In addition, a button between GND and RST will also provide a reset ability.

See also:

• NodeMCU home page

• GitHub: nodemcu/nodemcu-devkit-v1.0

• Github: nodemcu/nodemcu-devkit

• NodeMCU LUA docs

• ESP8266: NodeMCU Dev Kit V1.0 Revie w

node.IT (aka ESP-210)
See also:

• ESP-210

SparkFun WiFi Shield – ESP8266

SparkFun have produced a WiFi shield for the Arduino. This is an ESP8266 mounted
on a well designed PCB that mates with the Arduino. This makes communicating with
the ESP8266 via AT commands extremely easy with no wiring required. Simply push
the shield board into the sockets of the Arduino and you are done.

See also:

• SparkFun WiFi Shield – ESP8266

Page 43

https://www.sparkfun.com/products/13287
http://wiki.sweetpeas.se/index.php?title=ESP-210
http://blog.squix.ch/2015/06/esp8266-nodemcu-dev-kit-v10-review.html
http://blog.squix.ch/2015/06/esp8266-nodemcu-dev-kit-v10-review.html
http://www.nodemcu.com/docs/
https://github.com/nodemcu/nodemcu-devkit
https://github.com/nodemcu/nodemcu-devkit-v1.0
http://nodemcu.com/index_en.html

Espresso Lite
See also:

• Espresso lite

Wemos D1
The Wemos D1 provides an Arduino Uno styled board complete with multiple power
choices and female headers at both sides of the board. Should you be more
comfortable working on an Arduino Uno sized platform, this makes a good candidate.

See also:

• Wemos D1

Oak by digistump
See also:

• Oak by digistump

ESP32 Modules
At the time of writing, the ESP32 is not yet generally available, as such there are no
modules to be bought. Espressif have supplied beta units for evaluation.

The fantastic web site called PIGHIXXX provides the most top quality pinout images I
have ever seen. Please visit their site. They have pinouts for almost every conceivable
device I have ever wanted to know about.

Here is a schematic of the current ESP32 beta devices:

Page 44

http://digistump.com/oak/
http://www.wemos.cc/d1/Main_Page
http://www.espert.co/

ESP32-DevKitC

With the release of the ESP32, Espressif have released their own module for exposing
the ESP32 to more consumers. The board they have produced is called the "ESP32-
DevKit" and is considered bread-board friendly. The board contains headers for the
ESP32 as well as a micro USB adapter and two buttons for enable and boot. These
buttons can be used to "flash" or "download" new application code into the module. To
perform this task, hold the "EN" button down while pressing "Boot".

The pin out of the module is shown in the following table:

Page 45

3V3 GND

EN IO23

SVP IO22

SVN TXD0

IO34 RXD0

IO35 IO21

IO32 GND

IO33 IO19

IO25 IO18

IO26 IO5

IO27 IO17

IO14 IO16

IO12 IO4

GND IO0

IO13 IO2

SD2 IO15

SD3 SD1

GND SD0

5V CLK

When connected to a Windows 10 machine via micro USB, it shows up as a serial
device:

The default serial baud rate is 115200.

From a Linux environment, we see the serial port (usually) as /dev/ttyUSB0. If we install
the "screen" application, we can then connect a terminal using:

$ screen /dev/ttyUSB0 115200

To exit screen, enter "CTRL+A" followed by ":quit".

To reboot the device, pulse EN low. If IO0 is high, the device will normal boot while if
IO0 is low, it will boot into flash mode allowing us to upload a new application into the
device's flash storage.

See also:

• ESP32-DevKitC – Getting Started Guide

• Screen user's manual

•

Page 46

https://www.gnu.org/software/screen/manual/screen.html
https://espressif.com/sites/default/files/documentation/esp32-devkitc_getting_started_guide_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-devkitc_getting_started_guide_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-devkitc_getting_started_guide_en.pdf

Connecting to the ESP8266
The ESP8266 is a WiFi device and hence we will eventually connect to it using WiFi
protocols but some bootstrapping is required first. The device doesn't know what
network to connect to, which password to use and other necessary parameters. This of
course assumes we are connecting as a station, if we wish the device to be an access
point or we wish to load our own applications into it, the story gets deeper. This implies
that there is a some way to interact with the device other than WiFi and there is … the
answer is UART (Serial). The ESP8266 has a dedicated UART interface with pins
labeled TX and RX. The TX pin is the ESP8266 transmission (outbound from
ESP8266) and the RX pin is used to receive data (inbound into the ESP8266). These
pins can be connected to a UART partner. By far the easiest and most convenient
partner for us is a USB → UART converter. These are discussed in detail later in the
book. For now let us assume that we have set those up. Through the UART, we can
attach a terminal emulator to send keystrokes and have data received from the
ESP8266 displayed as characters on the screen. This is used extensively when
working with the AT commands. A second purpose of the UART is to receive binary
data used to "flash" the flash memory of the device to record new applications for
execution. There are a variety of technical tools at our disposal to achieve that task.

When we use a UART, we need to consider the concept of a baud rate. This is the
speed of communication of data between the ESP8266 and its partner. During boot, the
ESP8266 attempts to automatically determine the baud rate of the partner and match it.
It assumes a default of 74880 and if you have a serial terminal attached, you will see a
message like:

 ets Jan 8 2013,rst cause:2, boot mode:(1,0)

if it is configured to receive at 74880.

The ESP8266 has a second UART associated with it that is output only. One of the
primary purposes of this second UART is to output diagnostics and debugging
information. This can be extremely useful during development and as such I
recommend attaching two USB → UART converters to the device. The second UART
is multiplexed with pin GPIO2.

Page 47

See also:

• USB to UART converters
• AT Command Programming
• Loading a program into the ESP8266

WiFi Theory
When working with a WiFi oriented device, it is important that we have at least some
understanding of the concepts related to WiFi. At a high level, WiFi is the ability to
participate in TCP/IP connections over a wireless communication link. WiFi is
specifically the set of protocols described in the IEEE 802.11 Wireless LAN architecture.

Within this story, a device called a Wireless Access Point (access point or AP) acts as
the hub of all communications. Typically it is connected to (or acts as) as TCP/IP router
to the rest of the TCP/IP network. For example, in your home, you are likely to have a
WiFi access point connected to your modem (cable or DSL). WiFi connections are then
formed to the access point (through devices called stations) and TCP/IP traffic flows
through the access point to the Internet.

Page 48

The devices that connect to the access points are called "stations":

An ESP8266 device can play the role of an Access Point, a Station or both at the same
time.

Very commonly, the access point also has a network connection to the Internet and acts
as a bridge between the wireless network and the broader TCP/IP network that is the
Internet.

A collection of stations that wish to communicate with each other is termed a Basic
Service Set (BSS). The common configuration is what is known as an Infrastructure
BSS. In this mode, all communications inbound and outbound from an individual station
are routed through the access point.

A station must associate itself with an access point in order to participate in the story. A
station may only be associated with a single access point at any one time.

Page 49

Each participant in the network has a unique identifier called the MAC address. This is
a 48bit value.

When we have multiple access points within wireless range, the station needs to know
with which one to connect. Each access point has a network identifier called the BSSID
(or more commonly just SSID). SSID is service set identifier. It is a 32 character value
that represents the target of packets of information sent over the network.

See also:

• Wikipedia – Wireless access point
• Wikipedia – IEEE 802.11
• Wikipedia – WiFi Protected Access
• Wikipedia – IEEE 802.11i-2004

AT Command Programming
The quickest and easiest way to get started with an ESP8266 is to access it via the AT
command interface.

When we think about an ESP8266 device we find that it has a built in UART (Serial)
connection. This means that it can both send and receive data using the UART
protocol. We also know that the device can communicate with WiFi. What if we had an
application that ran on the ESP8266 that took "instructions" received over the serial link,
executed them and then returned a response? This would then allow us to use the
ESP8266 without ever having to know the programming languages that are native to the
device. This is exactly what a program that has so far been found to be pre-installed on
the ESP8266 does for us. The program is called the "AT command processor" named
after the format of the commands sent through the serial link. These commands are all
prefixed with "AT" and follow (roughly) the style known as the "Hayes command set".

Page 50

https://en.wikipedia.org/wiki/IEEE_802.11i-2004
https://en.wikipedia.org/wiki/Wi-Fi_Protected_Access
https://en.wikipedia.org/wiki/IEEE_802.11
https://en.wikipedia.org/wiki/Wireless_access_point

If we think of an application wishing to use the services of the ESP8266 as a client and
the ESP8266 as a server capable of servicing those commands as a server, then the
client sends strings of characters through the UART connection to the server and server
responds with the outcome.

Espressif publish a complete set of AT command documentation which can be found in
their forum page at:

• http://bbs.espressif.com/viewtopic.php?f=51&t=1022

There are two primary documents:

• ESP8266EX AT Instruction Set

• ESP8266EX AT Command Examples

Commands
When one has wired an ESP8266 to a serial converter, the next question will be "Is it
working?". When we connect a serial monitor, the first command we can send is "AT"
which should respond with a simple "OK".

An instruction passed to the device follows one of the following syntax options:

Type Format Description

Test AT+<x>=? Query the parameters and its range of values.

Query AT+<x>? Return the current value of the parameter.

Set AT+<x>=<...> Set the value of a parameter.

Execute AT+<x> Execute a command.

All "AT" instructions end with the "\r\n" pair.

Page 51

http://bbs.espressif.com/viewtopic.php?f=51&t=1022

Command Description

AT Returns OK

AT+RST Restart the ESP8266.

AT+GMR Returns firmware version for both the AT command processor and the SDK in
use. Currently, the response returned looks like:
AT version:0.21.0.0
SDK version:0.9.5

AT+GSLP=<time> Put the device into a deep sleep for a time in milliseconds. It will wake up after
this period.

ATE[0|1] Echo AT commands.
• ATE0 – Echo commands off
• ATE1 – Echo commands on

AT+RESTORE Restore the defaults of settings in flash memory.

AT+UART_CUR=<baudrate>,
<databits>, <stopbits>,
<parity>, <flow
control>

The databits can be 5, 6, 7 or 8.
parity can be 0=none, 1=odd, 2=even
flowcontrol can be:
0 – disable
1 – enable RTS
2 – enable CTS
3 – enable both RTS and CTS

AT+UART_DEF=<baundrate>
, <databits>,
<stopbits>, <parity>,
<flow control>

AT+SLEEP?

AT+SLEEP=<sleep mode>

AT+RFPOWER=<TX power>

AT+RFVDD?

AT+RFVDD=<VDD33>

AT+RFVDD

WIFI

AT+CWMODE_CUR=<mode> Sets the current mode of operation.
• 1 – Station mode
• 2 – AP mode

Page 52

• 3 – AP + Station mode

AT+CWMODE_CUR? Get the current mode of operation.

AT+CWMODE_CUR=? Get the list of available modes.

AT+CWMODE_DEF=<mode> Sets the current mode of operation.
• 1 – Station mode
• 2 – AP mode
• 3 – AP + Station mode

AT+CWMODE_DEF? Get the current mode of operation.

AT+CWMODE_DEF=? Get the list of available modes.

AT+CWJAP_CUR=<ssid>
,<password>[,<bssid>]

Join the WiFi network (JAP = Join Access Point).

AT+CWJAP_CUR? Get the current connection info.

AT+CWJAP_DEF=<ssid>
,<password>[,<bssid>]

Join the WiFi network (JAP = Join Access Point).

AT+CWJAP_DEF? Get the current connection info.

AT+CWLAP List the "List Access Points". The response is:
+ CWLAP: <ecn>, <ssid>, <rssi>, <mac>,<ch>
where:

• ecn
◦ 0 – OPEN
◦ 1 – WEP
◦ 2 – WPA_PSK
◦ 3 – WPA2_PSK
◦ 4 – WPA_WPA2_PSK

• ssid – SSID of AP
• rssi – Signal strength
• mac – MAC address
• ch – Channel

AT+CWLAP=<ssid>
,<mac>,<ch>

List a filtered set of access points.

AT+CWQAP Disconnect from AP.

AT+CWSAP_CUR? Configuration of softAP mode

AT+CWSAP_CUR=<ssid>,
<pwd>, <chl>, <ecn>

Page 53

AT+CWSAP_DEF? Configuration of softAP mode

AT+CWSAP_DEF=<ssid>,
<pwd>, <chl>, <ecn>

AT+CWLIF List of IPs connected in softAP mode

AT+CWDHCP_CUR?

AT+CWDHCP_CUR=<mode><en
>

Enable or disable DHCP.
• mode

◦ 0 – softAP
◦ 1 – station
◦ 2 – softAP + station

• en
◦ 0 – Enable
◦ 1 – Disable

AT+CWDHCP_DEF?

AT+CWDHCP_DEF=<mode><en
>

Enable or disable DHCP.
• mode

◦ 0 – softAP
◦ 1 – station
◦ 2 – softAP + station

• en
◦ 0 – Enable
◦ 1 – Disable

AP+CWAUTOCONN=<enable>

AT+CIPSTAMAC_CUR? Set/get MAC address of station.

AT+CIPSTAMAC_CUR=<mac> Set/get MAC address of station.

AT+CIPSTAMAC_DEF? Set/get MAC address of station.

AT+CIPSTAMAC_DEF=<mac> Set/get MAC address of station.

AT+CIPAPMAC_CUR? Set/get MAC address of softAP.

AT+CIPAPMAC_CUR=<mac> Set/get MAC address of softAP.

AT+CIPAPMAC_DEF? Set/get MAC address of softAP.

AT+CIPAPMAC_DEF=<mac> Set/get MAC address of softAP.

AT+CIPSTA_CUR=<iP> Set the ip address of station.

Page 54

AT+CIPSTA_CUR? Get the IP address of station. For example:
+CIPSTA:"0.0.0.0"

AT+CIPSTA_DEF=<iP> Set the ip address of station.

AT+CIPSTA_DEF? Get the IP address of station. For example:
+CIPSTA:"0.0.0.0"

AT+CIPAP_CUR? Set the ip address of softAP.

AT+CIPAP_CUR=<IP>[,<gat
eway>, <netmask>]

Set the ip address of softAP.

AT+CIPAP_DEF? Set the ip address of softAP.

AT+CIPAP_DEF=<IP>[,<gat
eway>, <netmask>]

Set the ip address of softAP.

AT+CIFSR Returns the IP address and gateway IP address.

TCP/IP networking

AT+CIPSTATUS Information about connection. Response format is:
STATUS: <stat>
+ CIPSTATUS: <id>, <type>, <addr>, <port>, <tetype>

• stat
◦ 2 – Got IP
◦ 3 – Connected
◦ 4 – Disconnected

• id – Id of the connection
• type – TCP or UDP
• addr – IP address
• port – Port number
• tetype

◦ 0 – ESP8266 runs as client
◦ 1 – ESP8266 runs as server

AT+CIPSTART=<type>,
<addr>, <port>[, <local
port>, <mode>]

Start a connection when CIPMUX=0.
• type – TCP or UDP
• addr – Remote IP address
• port – Remote port
• local port – For UDP only
• mode – For UDP only

◦ 0 – destination peer entity of UDP is fixed
◦ 1 – destination peer entity may change once
◦ 2 – destination peer entity may change

Page 55

AT+CIPSTART=<id>,
<type>, <addr>,
<port>[,<local port>,
<mode>]

Start a connection when CIPMUX=1.
• id – 0-4 value of connection
• type – TCP or UDP
• addr – Remote IP address
• port – Remote port
• local port – For UDP only
• mode – For UDP only

◦ 0 – destination peer entity of UDP is fixed
◦ 1 – destination peer entity may change once
◦ 2 – destination peer entity may change

AT+CIPSTART=? ???

AT+CIPSEND=<length> Send length characters.

AT+CIPCLOSE Close a connection.

AT+CIFSR Get the local IP address.

AT+CIPMUX=<mode> Enable multiple connections.
• 0 – Single connection.
• 1 – Multiple connections.

AT+CIPMUX? Returns the current value for CIPMUX.
• 0 – Single connection.
• 1 – Multiple connections.

AT+CIPSERVER=<mode>[,<p
ort>]

Configure as a TCP server. If no port is supplied, default is 333. A server may
only be created when CIPMUX=1 (allow multiple connections).

• mode
◦ 0 – Delete server (needs a restart after)
◦ 1 – Create server

AT+CIPMODE=<mode> Set the transfer mode.
• 0 – Normal mode.
• 1 – Unvarnished mode.

AT+CIPSTO=<time> Set server timeout. A value in the range of 0 – 7200 seconds.

AT+CIUPDATE ???

See also:

• YouTube – ESP8266 Tutorial AT Commands

Installing the latest AT command processor
The latest AT command processor can always be downloaded in binary form from the
Espressif web site. Always view the README that comes with the files and follow the

Page 56

https://www.youtube.com/watch?v=uznq8W9sOKQ

instructions contained within. In order to load the firmware images, you will need a
flashtool. In addition, you will need the files supplied with download. As of v0.50, the
files needed and the addresses to be loaded into are:

File Address

nonboot/eagle.flash.bin 0x00000

nonboot/eagle.irom0text.bin 0x40000

blank.bin 0x3E000

blank.bin 0x7E000

These instructions are for 512K flash chips.

See also:

• Espressif – Download of AT command processor – V0.50

Assembling circuits
Since the ESP8266 is an actual electronic component, some physical assembly is
required. This book will not attempt to cover non-ESP8266 electronics as that is a very
big and broad subject in its own right. However, what we will do is describe some of the
components that we have found extremely useful while building ESP8266 solutions.

USB to UART converters
You can't program an ESP8266 without supplying it data through a UART. The easiest
way to achieve this is through the use of a USB to UART converter. I use the devices
that are based upon the CP2102 which can be found cheaply on ebay for under $2
each. Another popular brand are the devices from Future Technology Devices
International (FTDI). You will want at least two. One for programming and one for
debugging. I suggest buying more than two just in case …

When ordering, don't forget to get some male-female USB extender cables as it is
unlikely you will be able to attach your USB devices to both a breadboard and the PC at
the same time via direct connection and although connector cables will work, plugging
into the breadboard is just so much easier. USB connector cables allow you to easily
connect from the PC to the USB socket to the UART USB plug. Here is an image of the

Page 57

http://bbs.espressif.com/viewtopic.php?f=46&t=1123
http://bbs.espressif.com/viewtopic.php?f=46&t=1123

type of connector cable I recommend. Get them with as short a cable length as
possible. 12-24 inches should be preferred.

When we plug in a USB → UART into a Windows machine, we can learn the COM port
that the new serial port appears upon by opening the Windows Device Manager. There
are a number of ways of doing this, one way is to launch it from the DOS command
window with:

mmc devmgmt.msc

Under the section called Ports (COM & LPT) you will find entries for each of the COM
ports. The COM ports don't provide you a mapping that a particular USB socket is
hosting a particular COM port so my poor suggestion is to pull the USB from each
socket one by one and make a note of which COM port disappears (or appears if you
are inserting a USB).

Page 58

See also:

• Connecting to the ESP8266
• Working with serial

Breadboards
I find I can never have too many breadboards. I suggest getting a few full size and half
size boards along with some 24 AWG connector wire and a good pair of wire strippers.
Keep a trash bin close by otherwise you will find yourself knee deep in stripped
insulation and cut wire parts before you know it. I also recommend some Dupont male-
male pre-made wires. Ribbon cable can also be useful.

Page 59

Power
We need electricity to get these devices working. I choose the MB102 breadboard
attachable power adapters. These can be powered from an ordinary wall-wart (mains
adapter) or from USB. It appears that the plug for wall-wart power is 2.1mm and center
positive however I strongly suggest that you read your specific supplier's data sheets
very carefully. There is also a potential concern that the barrel socket is wired in parallel
with the USB input which could mean that if you attach a high voltage input (eg. 12V)
while also having a USB source connected, you may very well damage your USB
device. The devices have a master on/off power switch plus a jumper to set 3.3V or 5V
outputs. You can even have one breadboard rail be 3.3V and the other 5V … but take
care not to apply 5V to your ESP8266. By having two power rails, one at 3.3V and the
other at 5V, you can power both the ESP8266 and devices/circuits that require 5V.

When the ESP8266 starts to transmit over wireless, that can draw a lot of current which
can cause ripples in your power supply. You may also have other sensors or devices
connected to your supply as well. These fluctuations in the voltage can cause
problems. It is strongly recommended that you place a 10 micro farad capacitor
between +ve and -ve as close to your ESP8266 as you can. This will provide a
reservoir of power to even out any transient ripples. This is one of those tips that you
ignore at your peril. Everything may work just fine without the capacitor … until it
doesn't or until you start getting intermittent problems and are at a loss to explain them.
Let me put it this way, for the few cents it costs and the zero harm it does, why not?

Page 60

Multi-meter / Logic probe / Logic Analyzer
When your circuit doesn't work and you are staring at it wondering what is wrong, you
will be thankful if you have a multi-meter and a logic probe. If your budget will stretch, I
also recommend a USB based logic analyzer such as those made by Saleae. These
allow you to monitor the signals coming into or being produced by your ESP8266.
Think of this as the best source of debugging available to you.

See also:

• Saleae logic analyzers

Sundry components
You will want the usual set of suspects for sundry components including LEDs,
resistors, capacitors and more.

Physical construction
When you have breadboarded your circuit and written your application, there may come
a time where you wish to make your solution permanent. At that point, you will need a
soldering iron, solder and some strip-board. I also recommend some female header
sockets so that you don't have to solder your ESP8266s directly into the circuits. Not
only does this allow you to reuse the devices (should you desire) but in the unfortunate
event that you fry one, it will be easier to replace.

Recommended setup for programming ESP8266
Obviously in order to program an ESP8266, you will actually need to obtain an
ESP8266 but it isn't that easy. The actual ESP8266 itself is a tiny integrated circuit and
you are unlikely to be able to use it directly. Instead, you will buy one of the many styles
of breakout boards that already exist. The common ones are the ESP-1 which exposes
2 GPIO pins and the ESP-12 which exposes 9. I recommend the ESP-12 as it is only
marginally more expensive for the extra pins exposed.

Page 61

https://www.saleae.com/

You will also need a mounting board as the ESP-12 by itself doesn't have connector
pins. You can commonly buy both the ESP-12 and the mounting board together at the
same time. However, check carefully, the mounting boards can be bought separately
and you need to validate that when you order and assume you are getting both that you
are not just buying the mounting boards without the ESP8266. You will be disappointed.

The ESP-12 is then soldered onto the mounting board so you will need a soldering iron
and some fine grained hand control. The soldering is not the easiest in the world as the
pins are extremely close together. For this reason and for others, I'd suggest buying
multiple ESP-12s and mounting boards instead of just one. It is also not difficult to fry
your ESP-12 if you get some wiring wrong. Once assembled, it should look as follows:

Mine never look this "clean" when build as my solder resin seems to discolor the original
attractive white base of the mounting board. However, looks aren't important.

Assuming you now have a mounted ESP-12 with pins, your next question will be "now
what"? This is where you will want a few breadboards and connector wire. You could
use dupont connectors with female sockets attached to the ESP-12 and male pins on
the other to attach to your breadboard but you will find that wires inevitably come loose
at the worse possible times. You can mount the ESP-12 to a breadboard but I tend to
find that there is not enough space for connector wires underneath it.

Page 62

Once secured, I recommend two USB → UART connectors. Why two? One dedicated
for flashing the device and one for debugging.

For power, I recommend using MB102 breadboard power supplies however, make sure
that you set the jumper cables to be 3.3V. You will ruin your ESP8266 if you try and
power it at 5V.

Once it is all wired up, you will need a PC with two open USB ports.

Parts list

• Breadboards – 2 half size – $3.50 for 2

• ESP-12 plus mounting boards – 3 sets – $3.80 each – $11.40

• CP2102 USB → UARTs – 2 pieces - $3.10

• USB male to female extenders – 2 pieces – $1.00 each – $2.00

• 24 AWG wire – 5 meters for $1.12

• 8pin 2.54mm stackable long legged female headers – 10 pieces for $3.95

• Red diffuse LEDs – A handful – $1.00

• Resistors – Some 10K, some 20K, some 330Ohm – A handful – $1.00

• Capacitors – Some 10 micro farad – $1.00

All told, it comes to about $30 + some shipping. I buy all my components through ebay
from Chinese suppliers that give me the price/quality I am looking for. The name of the
game though is patience. Once you order it usually takes 2-3 weeks for the parts to
arrive so be patient and use the time to watch you-tube videos on electronics projects
and the relevant community forums.

Eventually, you are likely going to want to build a permanent circuit for your
development. On a strip board the circuit I built looks like:

Page 63

Configuration for flashing the device
Later on in the book you will find that when it comes time to flash the device with your
new applications, you will have to set some of the GPIO pins to be low and then reboot.
This is the indication that it is now ready to be flashed. Obviously, you can build a
circuit that you use for flashing your firmware and then place the device in its final circuit
but you will find that during development, you will want to flash and test pretty
frequently. This means that you will want to use jumper wires and to allow you to move
the links of pins on your breadboards from their "flash" position to their "normal use"
position.

Page 64

Programming
The ESP8266 allows you to write applications that can run natively on the device. You
can compile C language code and deploy it to the device through a process known as
flashing. In order for your applications to do something useful, they have to be able to
interact with the environment. This could be making network connections or
sending/receiving data from attached sensors, inputs and outputs. In order to make that
happen, the ESP8266 contains a core set of functions that we can loosely think of as
the operating system of the device. The services of the operating system are exposed
to be called from your application providing a contract of services that you can leverage.
These services are fully documented. In order to successfully write applications for
deployment, you need to be aware of the existence of these services. They become
indispensable tools in your tool chest. For example, if you need to connect to a WiFi
access point, there is an API for that. To get your current IP address, there is an API for
that and to get the time since the device was started, there is an API for that. In fact,
there are a LOT of APIs available for us to use. The good news is that no-one is
expecting us to memorize all the details of their use. Rather it is sufficient to broadly
know that they exist and have somewhere to go when you want to look up the details of
how to use them.

To sensibly manage the number and variety of these exposed APIs, we can collect sets
of them together in meaningful groups of related functions. This gives us yet another
and better way to manage our knowledge and learning of them.

The primary source of knowledge on programming the ESP8266 is the ESP8266 SDK
API Guide. Direct links to all the relevant documents can be found at Reference
documents.

See also:

• Espressif Systems – Manufacturers of the ESP8266
• Espressif Bulletin Board System – Place for SDKs, docs and forums

Boot mode
When the ESP8266 boots, the values of the pins known as MTDO, GPIO0 and GPIO2 are
examined. The combination of the high or low values of these pins provide a 3 bit
number with a total of 8 possible values from 000 to 111. Each value has a possible
meaning interpreted by the device when it boots.

Page 65

http://bbs.espressif.com/
http://espressif.com/en/products/esp8266/

Value
[15-0-2]

Decimal
Value

Meaning

000 0 Remapping … details unknown.

001 1 Boot from the data received from UART0. Also
includes flashing the flash memory for subsequent
normal starts.

010 2 Jump start

011 3 Boot from flash memory

100 4 SDIO low speed V2

101 5 SDIO high speed V1

110 6 SDIO low speed V1

111 7 SDIO high speed V2

From a practical perspective, what this means is that if we wish the device to run
normally, we want to boot from flash with the pins having values 011 while when we
wish to flash the device with a new program, we want to supply 001 to boot from
UART0.

Note that MTDO is also known as GPIO15.

ESP8266 – Software Development Kit (SDK)

Include directories
The C programming language uses a text based pre-processor to include data in the
compilation. The C pre-processor has the ability to include additional C source files
that, by convention, are called header files and end with the ".h" prefix. Within these
files we commonly find definitions of data types and function prototypes that are used
during compilation. The ESP8266 SDK provides a directory called "include" which
contains the include files supplied by Espressif for use with the ESP8266. The list of
header files that we may use are as described in the following table:

Page 66

File Notes

at_custom.h Definitions for custom extensions to the AT command handler.

c_types.h C language definitions.

eagle_soc.h Low level definitions and macros. Heavily related to bit twiddling at the CPU level.
No idea why the file is called "eagle".

espconn.h TCP and UDP definitions. This has pre-reqs of c_types.h and ip_addr.h.

espnow.h Functions related to the esp now support.

ets_sys.h Unknown.

gpio.h Definitions for GPIO interactions.

ip_addr.h IP address definitions and macros.

mem.h Definitions for memory manipulation and access.

os_type.h OS type definitions.

osapi.h Includes a user supplied header called "user_config.h".

ping.h Definitions for the ping capability.

pwm.h Definitions for PWM.

queue.h Queue and list definitions.

smartconfig.h Definitions for smart config.

sntp.h Definitions for SNTP.

spi_flash.h Definitions for flash.

upgrade.h Definitions for upgrades.

user_interface.h Definitions for OS and WiFi. I have no explanation for why this file is named
"user_interface" as there is obviously no UI involved with ESP8266s.

ESP32 – Espressif IoT Development framework
For the ESP32, a framework has been developed by Espressif called the IoT
Development Framework which has become commonly known as "IDF". It can be
found on Github here:

https://github.com/espressif/esp-idf

The documentation for this can be found in the esp-idf/docs folder. The documentation
is very good and should always be read thoroughly. This book should not be
considered the primary source for this information.

Here is a walk through of building an environment on Linux. The full details are found in
the doc file called "linux-setup.rst":

$ cd ~
$ mkdir esp32

Page 67

https://github.com/espressif/esp-idf

$ cd esp32
$ sudo apt-get install git wget make libncurses-dev flex bison gperf python python-
serial
// >> Here we download and install an x86-64 build chain (compilers)
$ wget https://dl.espressif.com/dl/xtensa-esp32-elf-linux64-1.22.0-59.tar.gz
$ tar -xvf xtensa-esp32-elf-linux64-1.22.0-59.tar.gz
$ export PATH=$PATH:~/esp32/xtensa-esp32-elf/bin
// << End of build chain install
$ git clone --recursive https://github.com/espressif/esp-idf.git
$ cd esp-idf
$ git submodule update --init
$ export IDF_PATH=~/esp32/esp-idf

At this point, we should have all the ingredients necessary for building an application.
The recommended way to build an application is to clone the Espressif template app
and use that as the basis for your own work.

$ cd ~/esp32
$ mkdir apps
$ cd apps
$ git clone https://github.com/espressif/esp-idf-template.git myapp
$ cd myapp
$ make menuconfig

At this point an attractive configuration menu is presented that allows us to customize
our build environment.

We are now ready to compile our application:

$ make

The targets that we can make are:

• make menuconfig – Run the configuration menu.

• make deconfig

• make all

• make flash

• make clean – Clean the build removing anything that was present previously.

• make app

• make app-flash

• make app-clean

• make bootloader

• make bootloader-flash

• make bootloader-clean

• make partition-table

Page 68

It is important to note that the IDF is an evolving platform. It is being actively worked
upon by Espressif and the community. What that means is that from time to time you
should review hold current your IDF build is and consider replacing it with a newer build.
Realize that this may result in some rework to your applications, especially if build
procedures or APIs change. If you are building production level versions, make a note
of the dates of download from Guthub so that if needed, you can checkout those
specific versions which may have worked successfully for you in the past.

I recommend using "doxygen" to build an HTML document tree of the content of the IDF.
If you don't have doxygen installed run:

$ sudo apt-get install doxygen

Once installed, create a doxygen configuration file by running:

$ doxygen -g

The result will be a file called "Doxyfile".

Some of the doxygen configuration changes you will want to make will include:

• INPUT=<Root of IDF Install>/components

• OUTPUT_DIRECTORY=output

• OPTIMIZE_OUTPUT_FOR_C=YES

• RECURSIVE=YES

• GENERATE_HTML=YES

• GENERATE_LATEX=NO

• EXTRACT_ALL=YES

• EXTRACT_PRIVATE=YES

• EXTRACT_PACKAGE=YES

• EXTRACT_STATIC= YES

• EXTRACT_LOCAL_CLASSES =YES

• EXTRACT_LOCAL_METHODS =YES

• CLASS_DIAGRAMS=NO

• HAVE_DOT=NO

See also:

• Github: espressif/esp-idf-template

• Github: espressif/esp-idf

Page 69

https://github.com/espressif/esp-idf
https://github.com/espressif/esp-idf-template

How IDF works
When we type "make" in an IDF template project, the Makefile is executed. It does us no
harm in understanding how this works.

The Makefile in our project template sets a variable called "PROJECT_NAME" to the name
of our project. It then includes the Makefile found at <IDF_PATH>/make/project.mk and
make processing continues.

We can run a make with verbosity switched on to see exactly what is performed:

$ make VERBOSE=1

The build performs the following major steps:

• build the "conf" tool found in <IDF>/tools/kconfig

• The various components are built including:

◦ bt/libbt.a - Bluetooth

◦ driver/libdriver.a – Access for GPIO

◦ esp32/libesp32.a

◦ expat/libexpat.a – A C library for parsing XML

◦ freertos/libfreertos.a

◦ json/libjson.a – A C library for working with JSON

◦ log/liblog.a – Logging capabilities

◦ lwip/liblwip.a – Implementation of TCP/IP

◦ main/libmain.a

◦ mbed/libmbedtls.a – SSL/TLS support

◦ nvs_flash/libnvs_flash.a – Non Volatile storage

◦ spi_flash/libspi_flash.a – SPI flash driver

◦ tcpip_adapter/libtcpip_adapter.a – TCP/IP adapter

• Build the application

The last step is the one that is likely most useful to us. At a high level it runs:

• xtensa-esp32-elf-gcc – The C compiler

• -nostdlib – Don't include the standard C library

• -L<directory> - Include a bunch of directories looking for libraries

• -u call_user_start_cpu0 – Specify the entry point into code

• -Wl,--gc-sections

Page 70

• -Wl,-static

• -Wl,--start-group

• Link with the following libraries:

◦ -lbt

◦ -lbtdm_app

◦ -ldriver

◦ -lesp32
-lhal.a

◦ -lcrypto

◦ -lcore

◦ -lnet80211

◦ -lphy

◦ -lrtc

◦ -lpp

◦ -lwpa

◦ -lwps

• Do whatever -T says

◦ -T esp32.ld

◦ -T esp32.common.ld

◦ -T esp32.rom.ld

◦ -T esp32.peripherals.ld

• Link with:

◦ -lexpat

◦ -lfreertos

◦ -Wl,--undefined=uxTopUsedPriority

◦ -ljson

◦ -llog

◦ -llwip

◦ -lmbedtls

◦ /home/kolban/projects/esp32/esp-idf/components/newlib/lib/libc.a

Page 71

◦ /home/kolban/projects/esp32/esp-idf/components/newlib/lib/libm.a

◦ -lnvs_flash

◦ -lspi_flash

◦ -ltcpip_adapter

◦ -lmain

◦ -lgcc

◦ -Wl,--end-group

◦ -Wl,-EL

◦ -o /home/kolban/projects/esp32/apps/myapp/build/app-template.elf

◦ -Wl,-Map=/home/kolban/projects/esp32/apps/myapp/build/app-template.map

Error handling
Most of the ESP32 functions we call can return an error indication. The result is an
esp_err_t which can be treated as an integer. If the function succeeded, then the
return value is ESP_OK. Any other value is an error. A macro is available called
ESP_ERROR_CHECK() which takes a statement as a parameter. The statement is
supposed to return an esp_err_t. If the return is other than ESP_OK, then assertion is
raised, the ESP32 halts and the statement is written to the console. We must include
"esp_err.h" to use this capability.

See also:

• ESP-IDF logging

The build environment menu configuration
Within a project, we can create a configuration file that controls how the builds progress.
This configuration file (sdkconfig) has a very attractive menu configuration tool that can
be opened by running:

$ make menuconfig

Note: I am especially impressed with this component of the ESP-IDF. An attention to detail and quality that makes
configuration a lot nicer to use and less error prone than hand editing files.

After running the command we see a text based menu editor:

Page 72

We can tab between major components and make changes. There is even selection
context help assistance.

Under SDK tool configuration

• Compiler toolchain path/prefix – xtensa-esp32-elf-

• Python 2 interpreter – python

Under Bootloader config

• Bootloader log verbosity – Warning

Under Serial flasher config

• Default serial port – /dev/ttyUSB0

• Default baud rate – 115200 baud

• Use compressed upload – false

• Flash SPI mode – DIO

• Flash SPI speed – 40MHz

Under Partition Table

• Partition Table – Single factory app, no OTA

Under Component config

Page 73

• ESP32-specific config

◦ CPU frequency – 240MHz

◦ Select stack to enable (WiFi or BT) – WiFi

◦ Reserve memory for two cores – true

◦ Use TRAX tracing feature – false

◦ Use external SPI SRAM chip as main memory – false

◦ System event queue size – 32

◦ Event loop task stack size – 2048

◦ Main task stack size – 4096

◦ Standard-out outputs adds carriage return before newline – true

• FreeRTOS

◦ Run FreeRTOS only on first core – true

◦ Xtensa timer to use as the FreeRTOS tick source – Timer 0 (int (1000) tick
rate (Hz))

◦ Check for stack overflow – Check by stack pointer value

◦ Amount of thread local storage pointers – 3

◦ Panic handler behavior – Print registers and reboot

◦ Make exception and panic handlers JTAG/OCD aware – true

◦ FreeRTOS assertions – abort() on failed assertions

◦ Stop program on scheduler start when JTAG/OCD is detected – true

◦ Enable heap memory debug – false

◦ Debug FreeRTOS internals – ?

• Log output

◦ Default log verbosity – Warning

◦ Use ANSI terminal colors in log output – true

• LWIP

◦ Max number of open sockets – 4

◦ Index for thread-local-storage pointer for lwip – 0

◦ Enable SO_REUSEADDR option – false

• mbedTLS

Page 74

◦ TLS maximum message content length – 16384

◦ Enable mbedTLS debugging – false

• SPI Flash driver

◦ Enable operation counters – false

Creating a build environment of the Raspberry Pi 3
Many programmers believe that Linux is a superior development environment than
other operating systems such as Windows or Mac OSX. Words like "superior" and
"better" are usually subjective and I will avoid any discussion along those lines. Should
one choose to use Linux as a development environment, there are many choices for
where one hosts it. In this section, we are going to examine using the 4 core Raspberry
Pi model 3 as a platform for hosting Linux and building an ESP32 development
environment.

The CPU on the Raspberry Pi is ARM based which means that we need a cross
compiler to build executables for an ESP32. At the time of writing, there is not a known
location for a binary download of the tool suite for ESP32 so our choice is to build it from
scratch. Fortunately there are instructions for this in the "linux-setup.rst" document
found as part of the esp-idf project. In summary the steps are:

$ sudo apt-get install gawk gperf grep gettext libcurses5-dev python python-dev
automake bison flex texinfo help2man libtool libtool-bin
$ git clone -b xtensa-1.22.x https://github.com/espressif/crosstool-NG.git
$ cd crosstool-NG
$./bootstrap && ./configure --prefix=$PWD && make install
$./ct-ng xtensa-esp32-elf
$./ct-ng build
$ chmod -R u+w builds/xtensa-esp32-elf

Be aware that the build of the tool chain requires about 4GBytes of storage in order to
complete. As such, you will likely need a much larger micro SD card than the minimum
of 8GBytes that is normally used with a Pi. The resulting binaries for the tool chain end
up at about 100MBytes.

To physically construct a PI/ESP32 environment, I recommend the following. First, get
two full sized breadboards and remove the power rail from one of them. Next, bind the
two together at the edge where you removed a power rail such that there is only one
power rail between the two boards. This will then allow an ESP32 DevKitC to bridge
between them. Now on one of the breadboards, we can plug in a Raspberry PI
extender. We now have both the PI and the ESP32 col-located on the boards.

Taking a short USB cable, plug the DevKitC into the PI. This will provide both power to
the DevKitC as well as give us a serial port. On the PI, if we now run "lsusb", we will
see the DevKitC:

Page 75

$ lsusb
Bus 001 Device 018: ID 10c4:ea60 Cygnal Integrated Products, Inc. CP210x UART Bridge /
myAVR mySmartUSB light
Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp. SMSC9512/9514 Fast
Ethernet Adapter
Bus 001 Device 002: ID 0424:9514 Standard Microsystems Corp.
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

The DevKitC is the first entry. To further validate, we can look for /dev/ttyUSB0:

$ ls -l /dev/ttyUSB0
crw-rw---- 1 root dialout 188, 0 Sep 25 10:27 /dev/ttyUSB0

This is the serial port that shows up with a USB→Serial connector such as DevKitC.

We can now connect a serial terminal to this serial port and see the information
produced from it. One can use a tool such as "screen" to achieve this task. This tool is
not installed by default on the PI so we need to install it with:

$ sudo apt-get install screen

Once installed, we can run:

$ screen /dev/ttyUSB0 115200

At this point we should be seeing the serial output from the ESP32. To end our "screen"
session, we use the cryptic:

CTRL+A

followed by

:quit

Now let us turn our attention to using the PI to control booting and other useful
functions. We want to map some PI GPIO pins to some of the ESP32 functions. The
choice of PI pins is arbitrary but in my solution, I used the following:

PI Pin ESP32 function

17 EN

27 IO0 (Used for boot mode selection)

GND GND (common ground)

This is illustrated in the following schematic:

Page 76

Now we can look to some software to achieve our goals.

See also:

• Github: esp-idf/…/linux-setup.rst

Compiling
Application code for an ESP8266 program is commonly written in C. Before we can
deploy an application, we must compile the code into binary machine code instructions.
Before that though, let us spend a few minutes thinking about the code.

We write code using an editor and ideally an editor that understands the programming
language in which we are working. These editors provide syntax assistance, keyword
coloring and even contextual suggestions. When we save our entered code, we
compile it and then deploy it and then test it. This cycle is repeated so often that we
often use a product that encompasses editing, compilation, execution and testing as an
integrated whole. The generic name for such a product is an "Integrated Development
Environment" or "IDE". There are instances of these both fee and free. In the free
camp, my weapons of choice are Eclipse and Arduino IDE.

The Eclipse IDE is an extremely rich and powerful environment. Originally written by
IBM, it was open sourced many years ago. It is implemented in Java which means that
it runs and behaves identically across all the common platforms (Windows, Linux, OSx).
The nature of Eclipse is that it is architected as a series of extensible plug-ins. Because
of this, many contributors across many disciplines have extended the environment and

Page 77

https://github.com/espressif/esp-idf/blob/master/docs/linux-setup.rst

it is now a cohesive framework for just about everything. Included in this mix is a set of
plug-ins which, on aggregate, are called the "C Developers Tools" or "CDT". If one
takes a bare bones Eclipse and adds the CDT, one now has a first rate C IDE.
However, what the CDT does not supply (and for good reason) are the actual C
compilers and associated tools themselves. Instead, one "defines" the tools that one
wishes to use to the CDT and the CDT takes it from there.

For our ESP8266 story, this means that if we can find (which we can) a set of C
compiler tools that take C source and generate Xtensa binary, we can use CDT to build
our programs.

To make things more interesting though, we need to realize that C is not the only
language we can use for building ESP8266 applications. We can also use C++ and
assembly. You may be surprised that I mention assembly as that is as low level as we
can possibly get however there are odd times when we need just that (thankfully rarely)
… especially when we realize that we are pretty much programming directly to the
metal. The Arduino libraries (for example) have at least one assembly language file.

For physical file types, the suffixes used for different file we will come across during
development include:

• .h – C and C++ language header file

• .c – C language source file

• .cpp – C++ source file

• .S – Assembler source file

• .o – Object file (compiled source)

• .a – Archive library

To perform the compilations, we need a set of development tools.

My personal preference is the package for Eclipse which has everything pre-built and
ready for use. However, these tools can also be downloaded from the Internet as open
source projects on a piece by piece basis.

The macro LOCAL is a synonym for the C language keyword "static".

From reading the docs, no published example of how to compile was found. However,
when one uses the Eclipse open source project, one can see the Makefiles that are
used and this exposes examples of compilation.

A typical compilation looks like:

17:57:16 **** Build of configuration Default for project k_blinky ****
mingw32-make.exe -f

Page 78

C:/Users/IBM_ADMIN/Documents/RaspberryPi/ESP8266/EclipseDevKit/WorkSpace/k_blinky/Make
file all
CC user/user_main.c
AR build/app_app.a
LD build/app.out
--
Section info:

build/app.out: file format elf32-xtensa-le

Sections:
Idx Name Size VMA LMA File off Algn
 0 .data 0000053c 3ffe8000 3ffe8000 000000e0 2**4
 CONTENTS, ALLOC, LOAD, DATA
 1 .rodata 00000878 3ffe8540 3ffe8540 00000620 2**4
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 2 .bss 00009130 3ffe8db8 3ffe8db8 00000e98 2**4
 ALLOC
 3 .text 00006f22 40100000 40100000 00000e98 2**2
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 4 .irom0.text 00028058 40240000 40240000 00007dc0 2**4
 CONTENTS, ALLOC, LOAD, READONLY, CODE
--
Section info:
 Section| Description| Start (hex)| End (hex)|Used space
--
 data| Initialized Data (RAM)| 3FFE8000| 3FFE853C| 1340
 rodata| ReadOnly Data (RAM)| 3FFE8540| 3FFE8DB8| 2168
 bss| Uninitialized Data (RAM)| 3FFE8DB8| 3FFF1EE8| 37168
 text| Cached Code (IRAM)| 40100000| 40106F22| 28450
irom0_text| Uncached Code (SPI)| 40240000| 40268058| 163928
Total Used RAM : 40676
Free RAM : 41244
Free IRam : 4336
--
Run objcopy, please wait...
objcopy done
Run gen_appbin.exe
No boot needed.
Generate eagle.flash.bin and eagle.irom0text.bin successully in folder firmware.
eagle.flash.bin-------->0x00000
eagle.irom0text.bin---->0x40000
Done

17:57:19 Build Finished (took 3s.141ms)

We can build solutions using the pre-supplied Makefiles but, personally, I don't like
mystery so here is a recipe for building a solution from scratch.

1. Create a new project from File > New > C Project

2. Select a Makefile project

Page 79

3. Add the ESP8266 include directory

Page 80

4. Create the folders called "user" and "include"

5. Create the file called "user_config.h" in include.

6. Create the C file called "user_main.c" in user.

7. Create a Makefile

Base directory for the compiler
XTENSA_TOOLS_ROOT ?= c:/Espressif/xtensa-lx106-elf/bin
SDK_BASE ?= c:/Espressif/ESP8266_SDK
SDK_TOOLS ?= c:/Espressif/utils
ESPPORT = COM18
#ESPBAUD = 115200

Page 81

ESPBAUD = 230400

select which tools to use as compiler, librarian and linker
CC := $(XTENSA_TOOLS_ROOT)/xtensa-lx106-elf-gcc
AR := $(XTENSA_TOOLS_ROOT)/xtensa-lx106-elf-ar
LD := $(XTENSA_TOOLS_ROOT)/xtensa-lx106-elf-gcc
OBJCOPY := $(XTENSA_TOOLS_ROOT)/xtensa-lx106-elf-objcopy
OBJDUMP := $(XTENSA_TOOLS_ROOT)/xtensa-lx106-elf-objdump
ESPTOOL ?= $(SDK_TOOLS)/esptool.exe

compiler flags using during compilation of source files
TARGET = myApp
CFLAGS = -Os -g -O2 -std=gnu90 -Wpointer-arith -Wundef -Werror -Wl,-EL -fno-
inline-functions -nostdlib -mlongcalls -mtext-section-literals -mno-serialize-volatile
-D__ets__ -DICACHE_FLASH
MODULES = user
BUILD_BASE = build
FW_BASE = firmware
SDK_LIBDIR = lib
SDK_LDDIR = ld

#
Nothing to configure south of here.
#
linker flags used to generate the main object file
LDFLAGS = -nostdlib -Wl,--no-check-sections -u call_user_start -Wl,-static
libraries used in this project, mainly provided by the SDK
LIBS = c gcc hal phy pp net80211 lwip wpa main

linker script used for the above linkier step

LD_SCRIPT = eagle.app.v6.ld

flashimageoptions = --flash_freq 40m --flash_mode qio --flash_size 4m
SDK_LIBDIR := $(addprefix $(SDK_BASE)/, $(SDK_LIBDIR))
LD_SCRIPT := $(addprefix -T$(SDK_BASE)/$(SDK_LDDIR)/, $(LD_SCRIPT))
LIBS := $(addprefix -l, $(LIBS))
APP_AR := $(addprefix $(BUILD_BASE)/, $(TARGET)_app.a)
TARGET_OUT := $(addprefix $(BUILD_BASE)/, $(TARGET).out)
BUILD_DIRS = $(addprefix $(BUILD_BASE)/, $(MODULES)) $(FW_BASE)
SRC = $(foreach moduleDir, $(MODULES), $(wildcard $(moduleDir)/*.c))
Replace all x.c with x.o
OBJS = $(patsubst %.c, $(BUILD_BASE)/%.o, $(SRC))

all: checkdirs $(TARGET_OUT)
echo "Image file built!"

Build the application archive.
This is dependent on the compiled objects.
$(APP_AR): $(OBJS)

$(AR) -cru $(APP_AR) $(OBJS)

Build the objects from the C source files
$(BUILD_BASE)/%.o : %.c

$(CC) $(CFLAGS) -I$(SDK_BASE)/include -Iinclude -c $< -o $@

Page 82

Check that the required directories are present
checkdirs: $(BUILD_DIRS)

Create the directory structure which holds the builds (compiles)
$(BUILD_DIRS):

mkdir --parents --verbose $@

$(TARGET_OUT): $(APP_AR)
$(LD) -L$(SDK_LIBDIR) $(LD_SCRIPT) $(LDFLAGS) -Wl,--start-group $(LIBS) $

(APP_AR) -Wl,--end-group -o $@
$(OBJDUMP) --headers --section=.data \

--section=.rodata \
--section=.bss \
--section=.text \
--section=.irom0.text $@

$(OBJCOPY) --only-section .text --output-target binary $@ eagle.app.v6.text.bin
$(OBJCOPY) --only-section .data --output-target binary $@ eagle.app.v6.data.bin
$(OBJCOPY) --only-section .rodata --output-target binary $@

eagle.app.v6.rodata.bin
$(OBJCOPY) --only-section .irom0.text --output-target binary $@

eagle.app.v6.irom0text.bin
$(SDK_TOOLS)/gen_appbin.exe $@ 0 0 0 0
mv eagle.app.flash.bin $(FW_BASE)/eagle.flash.bin
mv eagle.app.v6.irom0text.bin $(FW_BASE)/eagle.irom0text.bin
rm eagle.app.v6.*

#
Flash the ESP8266

flash: all

$(ESPTOOL) --port $(ESPPORT) --baud $(ESPBAUD) write_flash $(flashimageoptions)
0x00000 $(FW_BASE)/eagle.flash.bin 0x40000 $(FW_BASE)/eagle.irom0text.bin

#
Clean any previous builds
#
clean:
Remove forceably and recursively

rm --recursive --force --verbose $(BUILD_BASE) $(FW_BASE)

flashId:
$(ESPTOOL) --port $(ESPPORT) --baud $(ESPBAUD) flash_id

readMac:
$(ESPTOOL) --port $(ESPPORT) --baud $(ESPBAUD) read_mac

imageInfo:
$(ESPTOOL) image_info $(FW_BASE)/eagle.flash.bin

8. Add Make targets for at least all and flash

Page 83

See also:

• Programming using Eclipse

ESP32 – Compilation
Let us imagine we have a "main.c" source file. How then can we properly compile that
to get it ready for linking into an ESP32 binary? The Espressif documented mechanism
is to use the ESP-IDF and that works great … but there are times when we can't start
with the Espressif make system but instead need to work in the opposite direction …
namely starting from an existing make system and integrating the correct steps into that
already existent environment. What we have done is spent time studying how the ESP-
IDF works and reverse engineered enough of it to build this recipe. First, if we run the
ESP-IDF make system with the environment variable VERBOSE set to 1, we get a lot of
detail. Here is what I currently see from a current build:

xtensa-esp32-elf-gcc -DESP_PLATFORM -Og -g3 -Wpointer-arith -Werror -Wno-error=unused-
function -Wno-error=unused-but-set-variable -Wno-error=unused-variable -Wall
-ffunction-sections -fdata-sections -mlongcalls -nostdlib -MMD -MP -std=gnu99 -g3
-fstrict-volatile-bitfields -DMBEDTLS_CONFIG_FILE='"mbedtls/esp_config.h"'
-DHAVE_CONFIG_H
-I /home/pi/projects/esp32/apps/parallel1/main/include
-I /home/pi/projects/esp32/esp-idf/components/bt/include
-I /home/pi/projects/esp32/esp-idf/components/driver/include
-I /home/pi/projects/esp32/esp-idf/components/esp32/include
-I /home/pi/projects/esp32/esp-idf/components/expat/port/include
-I /home/pi/projects/esp32/esp-idf/components/expat/include/expat
-I /home/pi/projects/esp32/esp-idf/components/freertos/include
-I /home/pi/projects/esp32/esp-idf/components/json/include
-I /home/pi/projects/esp32/esp-idf/components/json/port/include
-I /home/pi/projects/esp32/esp-idf/components/log/include
-I /home/pi/projects/esp32/esp-idf/components/lwip/include/lwip
-I /home/pi/projects/esp32/esp-idf/components/lwip/include/lwip/port
-I /home/pi/projects/esp32/esp-idf/components/lwip/include/lwip/posix
-I /home/pi/projects/esp32/esp-idf/components/mbedtls/port/include
-I /home/pi/projects/esp32/esp-idf/components/mbedtls/include
-I /home/pi/projects/esp32/esp-idf/components/newlib/include
-I /home/pi/projects/esp32/esp-idf/components/nghttp/port/include
-I /home/pi/projects/esp32/esp-idf/components/nghttp/include
-I /home/pi/projects/esp32/esp-idf/components/nvs_flash/include
-I /home/pi/projects/esp32/esp-idf/components/spi_flash/include
-I /home/pi/projects/esp32/esp-idf/components/tcpip_adapter/include
-I /home/pi/projects/esp32/apps/parallel1/build/include/
-I. -c /home/pi/projects/esp32/apps/parallel1/main/./main.c -o main.o

Let us now pull it apart piece by piece and see what it going on:

• xtensa-esp-elf-gcc – This is the C compiler that generates compiled code for
the ESP32 CPUs.

• -DESP_PLATFORM – This sets the existence of a macro definition called
"ESP_PLATFORM". The belief is that this can be used by the C pre-processor to

Page 84

include, exclude or otherwise manipulate the source before compilation. For
example, there may be source files that have common code within them where
some code is valid for one environment/platform and some other code, also
contained in the same source file, is valid for a different environment/platform.
The existence of ESP_PLATFORM could be used as a distinguisher within the
code.

• -Og – Optimize for debugging experience.

• -g3 – Level 3 debugging information included.

• -Wpointer-arith – Produce warnings relating to pointer arithmetic. Specifically,
anything that relies on the size of a function type or the size of void.

• -Werror – Make all warnings into errors. This stops/fails a compilation on any
warnings produced during compile.

• -Wno-error=unused-function – Don't flag an un-used function as an error.

• -Wno-error=unused-but-set-variable – Don't flag an unused variable as an
error that had a value set upon it.

• -Wno-error=unused-variable – Don't flag an unused variable as an error.

• -Wall – Enable a large set of warnings.

• -ffunction-sections – Place each function in its own section.

• -fdata-sections – Place each piece of data in its own section.

• -mlongcalls – An Xtensa specific option

• -nostdlib – Do not use the standard startup files or libraries when linking.

• -MMD

• -MP – Something about makefiles.

• -std=gnu99 – Set the compiler standard.

• -fstrict-volatile-bitfields – How volatile bit fields should be accessed.

• -DMBEDTLS_CONFIG_FILE='"mbedtls/esp_config.h"'

• -DHAVE_CONFIG_H – Define a macro flag.

• -I <various> – Specify directories which should be searched for includes. The
majority of additional directories are included in the ESP-IDF directory structures.

• -c – Compile to object file with no linking.

• -o <filename> – write the output into the given file.

Page 85

ESP32 – Flashing
Flashing is the mechanism used to move a binary from the file system into the ESP32.
By examination of the recipes supplied by Espressif, we find the following:

python /home/pi/projects/esp32/esp-idf/components/esptool_py/esptool/esptool.py --chip
esp32 --port "/dev/ttyUSB0" --baud 230400 write_flash -z --flash_mode "dio"
--flash_freq "40m" 0x1000
/home/pi/projects/esp32/apps/parallel1/build/bootloader/bootloader.bin 0x10000
/home/pi/projects/esp32/apps/parallel1/build/app-template.bin 0x4000
/home/pi/projects/esp32/apps/parallel1/build/partitions_singleapp.bin

Breaking this down we arrive at:

• python – run a python script.

• esptool.py – Run the program called "esptool.py".

• --chip esp32 – Declare that we are flashing an ESP32.

• --port "/dev/ttyUSB0" – Define the serial port to which the ESP32 is
connected.

• --baud 115200 – Define the transmission baud rate across the serial port.

• write_flash – Perform the write flash command.

• -z – Unknown.

• --flash_mode "dio" – Use "dio" flash mode.

• --flash_freq "40m" – Use a flash frequency of "40m"

• 0x1000 bootloader.bin – Load the bootloader at 0x1000.

• 0x10000 appname.bin – Load the application at 0x10000.

• 0x4000 partitions_singleapp.bin – Load the partition table at 0x4000.

Following the construction of the ELF file, we now run a tool which converts the ELF into
an uploadable image. Again, looking at the ESP-IDF tools, we find the following
command being run:

python /home/pi/projects/esp32/esp-idf/components/esptool_py/esptool/esptool.py --chip
esp32 elf2image --flash_mode "dio" --flash_freq "40m" -o
/home/pi/projects/esp32/apps/v1/build/app-template.bin
/home/pi/projects/esp32/apps/v1/build/app-template.elf

• python

• esptool.py

• --chip esp32

• elf2image

Page 86

• --flash_mode "dio"

• --flash_freq "40m"

• -o <output file>

• <input elf file>

Loading a program into the ESP8266
Once the program has been compiled, it needs to be loaded into the ESP8266. This
task is called "flashing". In order to flash the ESP8266, it needs to be placed in a mode
where it will accept the new incoming program to replace the old existing program. The
way this is done is to reboot the ESP8266 either by removing and reapplying power or
by bringing the REST pin low and then high again. However, just rebooting the device
is not enough. During start-up, the device examines the signal value found on GPIO0. If
the signal is low, then this is the indication that a flash programming session is about to
happen. If the signal on GPIO0 is high, it will enter its normal operation mode. Because
of this, it is recommended not to let GPIO0 float. We don't want it to accidentally enter
flashing mode when not desired. A pull-up resistor of 10k is perfect.

We can build a circuit which includes a couple of buttons. One for performing a reset
and one for bringing GPIO0 low. Pressing the reset button by itself will reboot the device.
This alone is already useful. However if we are holding the "GPIO0 low" button while we
press reset, then we are placed in flash mode.

Here is an example schematic diagram illustrating an ESP-12 including the buttons:

Page 87

Notice that there is a voltage divider from the output of the USB to UART converter TX
pin. The thinking behind this is to handle the case where the output TX voltage is
greater than the desired 3.3V wanted on the RX input of the ESP8266. Is this required?
The belief is that it is not required if you are sure that the output TX voltage will be 3.3V.
This appears to be the case for the CP2102 range of USB to UARTs however I am have
no knowledge on other devices. What I can claim is that having a voltage divider that
reduces 5V to 3.3V still results in a usable output level voltage to indicate a high signal
when fed with a 3.3V actual output. I don't know how close I am coming to the minimum
RX input voltage on the ESP8266 indicating a high.

When built out on a breadboard, it may look as follows:

Page 88

This however suffers from the disadvantage that it requires us to manually press some
buttons to load a new application. This is not a horrible situation but maybe we have
alternatives?

When we are flashing our ESP8266s, we commonly connect them to USB->UART
converters. These devices are able to supply UART used to program the ESP8266.
We are familiar with the pins labeled RX and TX but what about the pins labeled RTS
and DTR … what might those do for us?

RTS which is "Ready to Send" is an output from the UART to inform the downstream
device that it may now send data. This is commonly connected to the partner input CTS
which is "Clear to Send" which indicates that it is now acceptable to send data. Both
RTS and CTS are active low.

DTR which is "Data Terminal Ready" is used in flow control.

When flashing the device using the Eclipse tools and recipes the following are the flash
commands that are run (as an example) and the messages logged:

22:34:17 **** Build of configuration Default for project k_blinky ****
mingw32-make.exe -f C:/Users/User1/WorkSpace/k_blinky/Makefile flash
c:/Espressif/utils/esptool.exe -p COM11 -b 115200 write_flash -ff 40m -fm qio -fs 4m
0x00000 firmware/eagle.flash.bin 0x40000 firmware/eagle.irom0text.bin
Connecting...
Erasing flash...

Page 89

head: 8 ;total: 8
erase size : 16384

Writing at 0x00000000... (3 %)
Writing at 0x00000400... (6 %)
…
Writing at 0x00007000... (96 %)
Writing at 0x00007400... (100 %)
Written 30720 bytes in 3.01 seconds (81.62 kbit/s)...
Erasing flash...
head: 16 ;total: 41
erase size : 102400

Writing at 0x00040000... (0 %)
Writing at 0x00040400... (1 %)
…
Writing at 0x00067c00... (99 %)
Writing at 0x00068000... (100 %)
Written 164864 bytes in 16.18 seconds (81.53 kbit/s)...

Leaving...

22:34:40 Build Finished (took 23s.424ms)

As an example of what the messages look like if we fail to put the ESP8266 into flash
mode, we have the following:

13:47:09 **** Build of configuration Default for project k_blinky ****
mingw32-make.exe -f C:/Users/User1/WorkSpace/k_blinky/Makefile flash
c:/Espressif/utils/esptool.exe -p COM11 -b 115200 write_flash -ff 40m -fm qio -fs 4m
0x00000 firmware/eagle.flash.bin 0x40000 firmware/eagle.irom0text.bin
Connecting…
Traceback (most recent call last):
 File "esptool.py", line 558, in <module>
 File "esptool.py", line 160, in connect
Exception: Failed to connect
C:/Users/User1/WorkSpace/k_blinky/Makefile:313: recipe for target 'flash' failed
mingw32-make.exe: *** [flash] Error 255

13:47:14 Build Finished (took 5s.329ms)

The tool called esptool.py provides an excellent environment for flashing the device but
it can also be used for "reading" what is currently stored upon it. This can be used for
making backups of the applications contained within before re-flashing them with a new
program. This way, you can always return to what you had before over-writing. For
example, on Unix:

esptool.py --port /dev/ttyUSB0 read_flash 0x00000 0xFFFF backup-0x00000.bin
esptool.py --port /dev/ttyUSB0 read_flash 0x10000 0x3FFFF backup-0x10000.bin

See also:

• USB to UART converters

Page 90

• Recommended setup for programming ESP8266
• Working with memory
• What is a UART?
• esptool.py
• esptool-ck

Programming environments
We can program the ESP8266 using the Espressif supplied SDK on Windows using
Eclipse. A separate chapter on setting up that environment is supplied. We also have
the ability to program the ESP8266 using the Arduino IDE. This is potentially a game
changing story and it too been given its own important chapter.

See also:

• Programming using Eclipse
• Programming using the Arduino IDE

Compilation tools
There are a number of tools that are essential when building C based ESP8266
applications.

ar
The archive tool is used to packaged together compiled object files into libraries. These
libraries end with ".a" (archive). A library can be named when using a linker and the
objects contained within will be used to resolve externals.

Some of the most common flags used with this tool include:

• -c – Create a library

• -r – Replace existing members in the library

• -u – Update existing members in the library

The syntax of the command is:

ar -cru libraryName member.o member.o ….

See also:

• GNU – ar
• nm

esptool.py
This tool is an open source implementation used to flash the ESP8266 through a serial
port. It is written in Python. Versions have been seen to be available as windows

Page 91

https://sourceware.org/binutils/docs/binutils/ar.html
http://www.ftdichip.com/Support/Documents/TechnicalNotes/TN_111%20What%20is%20UART.pdf

executables that appear to have been generated ".EXE" files from the Python code
suitable for running on Windows without a supporting Python runtime installation.

• -p port | --port port – The serial port to use

• -b baud | --baud baud – The baud rate to use for serial

• -h – Help

• {command} -h – Help for that command

• load_ram {filename} – Download an image to RAM and execute

• dump_mem {address} {size} {filename} – Dump arbitrary memory to disk

• read_mem {address} – Read arbitrary memory location

• write_mem {address} {value} {mask} – Read-modify-write to arbitrary memory
location

• write_flash – Write a binary blob to flash

◦ --flash_freq {40m,26m,20m,80m} | -ff {40m,26m,20m,80m} – SPI Flash
frequency

◦ --flash_mode {qio,qout,dio,dout} | -fm {qio,qout,dio,dout} – SPI Flash
mode

◦ --flash_size {4m,2m,8m,16m,32m,16m-c1,32m-c1,32m-c2} | -fs

{4m,2m,8m,16m,32m,16m-c1,32m-c1,32m-c2} – SPI Flash size in Mbit

◦ {address} {fileName} – Address to write, file to write … repeatable

• run – Run application code in flash

• image_info {image file} – Dump headers from an application image. Here is
an example output:

Entry point: 40100004
3 segments

Segment 1: 25356 bytes at 40100000
Segment 2: 1344 bytes at 3ffe8000
Segment 3: 924 bytes at 3ffe8540

Checksum: 40 (valid)

• make_image – Create an application image from binary files

◦ --segfile SEGFILE, -f SEGFILE – Segment input file

◦ --segaddr SEGADDR, -a SEGADDR – Segment base address

◦ --entrypoint ENTRYPOINT, -e ENTRYPOINT – Address of entry point

Page 92

◦ output

• elf2image – Create an application image from ELF file

◦ --output OUTPUT, -o OUTPUT – Output filename prefix

◦ --flash_freq {40m,26m,20m,80m}, -ff {40m,26m,20m,80m} – SPI Flash
frequency

◦ --flash_mode {qio,qout,dio,dout}, -fm {qio,qout,dio,dout} – SPI Flash
mode

◦ --flash_size {4m,2m,8m,16m,32m,16m-c1,32m-c1,32m-c2}, -fs

{4m,2m,8m,16m,32m,16m-c1,32m-c1,32m-c2} – SPI Flash size in Mbit

◦ --entry-symbol ENTRY_SYMBOL, -es ENTRY_SYMBOL – Entry point symbol
name (default 'call_user_start')

• read_mac – Read MAC address from OTP ROM. Here is an example output:

MAC AP: 1A-FE-34-F9-43-22
MAC STA: 18-FE-34-F9-43-22

• flash_id – Read SPI flash manufacturer and device ID. Here is an example
output:

head: 0 ;total: 0
erase size : 0
Manufacturer: c8
Device: 4014

• read_flash – Read SPI flash content

◦ address – Start address

◦ size – Size of region to dump

◦ filename – Name of binary dump

• erase_flash – Perform Chip Erase on SPI flash. This is an especially useful
command if one ends up someone bricking the device as it should reset the
device to its defaults.

See also:

• esptool-ck
• nodemcu-flasher
• Loading a program into the ESP8266
• Working with memory
• Github: themadinventor/esptool

esptool-ck
Another tool that is also called esptool-ck. The naming of these tools being so similar
is starting to become uncomfortable.

Page 93

https://github.com/themadinventor/esptool

• -eo <filename> – Open an ELF object.

• -es <section> <filename> – Read the named section from the object and writes
to the named file.

• -ec – Closes the ELF file.

• -bo <filename> – Prepares a firmware file for the ESP.

• -bm <qio|qout|dio|dout> – Set the flash chip interface mode.

• -bz <512K|256K|1M|2M|4M|8M|16M|32M> – Set the flash chip size.

• -bf <40|26|20|80> – Set the flash chip frequency.

• -bs <section> – Read the ELF section and write to the firmware image.

• -bc – Close the firmware image.

• -v – Increase the verbosity of output (-v, -vv, -vvv)

• -q – Disable most of the output

• -cp <device> – Serial device (eg. COM1)

• -cd <board> – Select the reset method for resetting the board.

◦ none

◦ ck

◦ wifio

◦ nodemcu

• -cb <baudrate> – Select the baud rate to use.

• -ca <address> – Address of flash memory as the target of the upload.

• -cf <filename> – Upload the named file to flash.

Here, for example, is a command to flash a NodeMCU devKit board:

esptool -cp COM15 -cd nodemcu -cb 115200 -ca 0x00000 -cf myApp_0x00000.bin

Here is a clean log of an Arduino IDE upload:

esptool v0.4.5 - (c) 2014 Ch. Klippel <ck@atelier-klippel.de>
setting board to ck
setting baudrate from 115200 to 115200
setting port from COM1 to COM11
setting address from 0x00000000 to 0x00000000
espcomm_upload_file
stat C:\Release/Test_ESP_RESTClient.bin success
setting serial port timeouts to 1000 ms

Page 94

mailto:ck@atelier-klippel.de

opening bootloader
resetting board
trying to connect

flush start
setting serial port timeouts to 1 ms
setting serial port timeouts to 1000 ms
flush complete
espcomm_send_command: sending command header
espcomm_send_command: sending command payload
read 0, requested 1

trying to connect
flush start
setting serial port timeouts to 1 ms
setting serial port timeouts to 1000 ms
flush complete
espcomm_send_command: sending command header
espcomm_send_command: sending command payload
espcomm_send_command: receiving 2 bytes of data
espcomm_send_command: receiving 2 bytes of data
espcomm_send_command: receiving 2 bytes of data
espcomm_send_command: receiving 2 bytes of data
espcomm_send_command: receiving 2 bytes of data
espcomm_send_command: receiving 2 bytes of data
espcomm_send_command: receiving 2 bytes of data
espcomm_send_command: receiving 2 bytes of data
espcomm_open

Uploading 312944 bytes from
C:\Release/Test_ESP_RESTClient.bin to flash at 0x00000000

erasing flash
size: 04c670 address: 000000
first_sector_index: 0
total_sector_count: 77
head_sector_count: 16
adjusted_sector_count: 61
adjusted_size: 03d000
espcomm_send_command: sending command header
espcomm_send_command: sending command payload
setting serial port timeouts to 10000 ms
setting serial port timeouts to 1000 ms
espcomm_send_command: receiving 2 bytes of data
writing flash

..

..

..

...…
starting app without reboot

espcomm_send_command: sending command header
espcomm_send_command: sending command payload
espcomm_send_command: receiving 2 bytes of data

closing bootloader
flush start
setting serial port timeouts to 1 ms
setting serial port timeouts to 1000 ms
flush complete

Page 95

Binaries corresponding to releases of the tool can be found under the releases section:

https://github.com/igrr/esptool-ck/releases

See also:

• esptool.py
• nodemcu-flasher
• Github: https://github.com/igrr/esptool-ck

gcc
The open source GNU Compiler Collection includes compilers for C and C++. If we
look carefully at the flags that are supplied for compiling and linking code for the
ESP8266 we find the following:

Compiling

• -c – Compile the code to a .o object file.

• -Os – Optimize code generation for size.

• -O2 – Optimize for performance which code result in larger code size. For
example, instead of making a function call, code could be in-lined.

• -ggdb – Generate debug code that can be used by the gdb debugger..

• -std=gnu90 – Dialect of C supported.

• -Werror – Make all warnings errors.

• -Wno-address – Do not warn about suspicious use of memory addresses.

• -Wpointer-arith – Warn when pointer arithmetic is attempted that depends on
sizeof.

• -Wundef – Warn when an identifier is found in a #if directive that is not a macro.

• -fno-inline-functions – Do not allow functions to be replaced with in-line code.

• -mlongcalls – Translate direct assembly language calls into indirect calls.

• -mtext-section-literals – Allow literals to be intermixed with the text section.

• -mno-serialize-volatile – Special instructions for volatile definitions.

Linking:

• -nostdlib – Don't use standard C or C++ system startup libraries

See also:

• GCC – The GNU Compiler Collection

Page 96

https://gcc.gnu.org/
https://github.com/igrr/esptool-ck
https://github.com/igrr/esptool-ck/releases

gen_appbin.py
The syntax of this tool is:

gen_appbin.py app.out boot_mode flash_mode flash_clk_div flash_size

• flash_mode

◦ 0 – QIO

◦ 1 – QOUT

◦ 2 – DIO

◦ 3 – DOUT

• flash_clk_div

◦ 0 – 80m / 2

◦ 1 – 80m / 3

◦ 2 – 80m / 4

◦ 0xf – 80m / 1

• flash_size_map

◦ 0 – 512 KB (256 KB + 256 KB)

◦ 1 – 256 KB

◦ 2 – 1024 KB (512 KB + 512 KB)

◦ 3 – 2048 KB (512 KB + 512 KB)

◦ 4 – 4096 KB (512 KB + 512 KB)

◦ 5 – 2048 KB (1024 KB + 1024 KB)

◦ 6 – 4096 KB (1024 KB + 1024 KB)

The following files are expected to exist:

• eagle.app.v6.irom0text.bin

• eagle.app.v6.text.bin

• eagle.app.v6.data.bin

• eagle.app.v6.rodata.bin

The output of this command is a new file called eagle.app.flash.bin.

Page 97

make
Make is a compilation engine used to track what has to be compiled in order to build
your target application. Make is driven by a Makefile. Although powerful and simple
enough for simple C projects, it can get complex pretty quickly. If you find yourself
studying Makefiles written by others, grab the excellent GNU make documentation and
study it deeply.

nodemcu-flasher
This tool is another instance of an ESP8266 flasher. Unlike some of the other tools
available, this one is GUI based. From within the tool one can select all the options that
one might expect including one or more files to flash, the serial connection and
information and more.

One entered, one can click the "Flash" button and flashing begins with an attractive
progress bar.

The following is what the tool looks like after completing a flash:

Here is what it looks like within its flash file selection tab:

Page 98

And finally, here are the communication settings:

Although visually attractive, it seems to have a big drawback. It feels much slower to
flash than some of the other tools. This, of course, assumes that one attempts to flash
at the same baud rate.

However, even with this slight weakness, it is still one of the easiest to use flasher tools
available and appears to be perfect for the casual flasher. If I were to recommend a tool
to be used by someone who only needed to install an app on their ESP8266
infrequently, this would probably be it.

See also:

• esptool.py
• esptool-ck
• GitHub: nodemcu/nodemcu-flasher
• YouTube: ESP8266 How To Flash NodeMcu Firmware
• Flashing the NodeMCU firmware on the ESP8266 (Windows) - Guide

Page 99

http://www.whatimade.today/loading-the-nodemcu-firmware-on-the-esp8266-windows-guide/
https://www.youtube.com/watch?v=Gh_pgqjfeQc
https://github.com/nodemcu/nodemcu-flasher

nm
List symbols from object files.

Useful flags:

• --defined-only – Show only defined exports

• --undefined-only – Show only undefined exports

• --line-numbers

See also:

• ar
• GNU – nm

objcopy
See also:

• GNU – objcopy

objdump
The command is xtensa-lx106-elf-objdump located in

C:\Espressif\xtensa-lx106-elf\bin.

Some of the more important flags are:

• --syms – Dump the symbols in the archive.

See also:

• Wikipedia – objdump
• GNU – objdump
• man page – objdump(1)

xxd
This is a deceptively simple but useful tool. What it does is dump binary data contained
within a file in a formatted form. One powerful use of it is to take a binary file and
produce a C language data structure that represents the content of the file. This means
that you can take binary data and include it in your applications. A copy of xxd.exe is
distributed with the SDK supplied by Espressif in the tools folder.

The following will read the content of inFile as binary data and produce a header file in
the outFile.

xxd -include <inFile> <outFile>

Page 100

http://linux.die.net/man/1/objdump
https://sourceware.org/binutils/docs/binutils/objdump.html
https://en.wikipedia.org/wiki/Objdump
https://sourceware.org/binutils/docs/binutils/objcopy.html
https://sourceware.org/binutils/docs/binutils/nm.html

ESP8266 Linking
When the C and C++ source files that constitute your project have been compiled to
their object files, it is time to link them with libraries to finalize the executable to be
deployed. Here is an example of a linking command used to build an executable.

xtensa-lx106-elf-gcc
 -g
 -Os
 -nostdlib
 -Wl,--no-check-sections -u call_user_start
 -Wl,-static
 "-L??/tools/sdk//lib"
 "-L??tools/sdk//ld"
 "-Teagle.flash.512k.ld"
 -Wl,-wrap,system_restart_local
 -Wl,-wrap,register_chipv6_phy
 -o "Release/Test_ESP_RESTClient.elf"
 -Wl,--start-group
 x.o
 y.o
 z.o
 -lm
 -lgcc
 -lhal
 -lphy
 -lnet80211
 -llwip
 -lwpa
 -lmain
 -lpp
 -lsmartconfig
 -lwps
 -lcrypto
-Wl,--end-group
"-LRelease"

Notice that some libraries are used when linking. Many of these libraries are supplied
with the Espressif SDK.

Page 101

Library name Description

at

crypto

espnow

hal

json

lwip

lwip_536

main

net80211

phy

pp

pwm

smartconfig

ssc

ssl

upgrade

wpa

wps

See also:

• Working with memory
• The GNU Linker
• An Introduction to the GNU – Compiler and Linker

ESP32 Linking
We have seen how to compile a C source file into its object file (.o) representation. Now
we turn our attention on how to link these object files together with the ESP32 libraries
in order to produce a binary file that can be flashed into the ESP32 for execution.

If we examine the output of compiling a project using the ESP-IDF with the
VERBOSE=1 flag set, we see the underlying command used to perform the linking.
Here is an example and then we'll start to pull it apart:

xtensa-esp32-elf-gcc -nostdlib -L/home/pi/projects/esp32/esp-idf/lib
-L/home/pi/projects/esp32/esp-idf/ld
-L/home/pi/projects/esp32/apps/parallel1/build/bootloader
-L/home/pi/projects/esp32/apps/parallel1/build/bt
-L/home/pi/projects/esp32/apps/parallel1/build/driver
-L/home/pi/projects/esp32/apps/parallel1/build/esp32
-L/home/pi/projects/esp32/apps/parallel1/build/esptool_py
-L/home/pi/projects/esp32/apps/parallel1/build/expat

Page 102

-L/home/pi/projects/esp32/apps/parallel1/build/freertos
-L/home/pi/projects/esp32/apps/parallel1/build/json
-L/home/pi/projects/esp32/apps/parallel1/build/log
-L/home/pi/projects/esp32/apps/parallel1/build/lwip
-L/home/pi/projects/esp32/apps/parallel1/build/mbedtls
-L/home/pi/projects/esp32/apps/parallel1/build/newlib
-L/home/pi/projects/esp32/apps/parallel1/build/nghttp
-L/home/pi/projects/esp32/apps/parallel1/build/nvs_flash
-L/home/pi/projects/esp32/apps/parallel1/build/partition_table
-L/home/pi/projects/esp32/apps/parallel1/build/spi_flash
-L/home/pi/projects/esp32/apps/parallel1/build/tcpip_adapter
-L/home/pi/projects/esp32/apps/parallel1/build/main -u call_user_start_cpu0 -Wl,--gc-
sections -Wl,-static -Wl,--start-group -lbt -L/home/pi/projects/esp32/esp-
idf/components/bt/lib -lbtdm_app -ldriver -lesp32 /home/pi/projects/esp32/esp-
idf/components/esp32/libhal.a -L/home/pi/projects/esp32/esp-idf/components/esp32/lib
-lcrypto -lcore -lnet80211 -lphy -lrtc -lpp -lwpa -lwps -L
/home/pi/projects/esp32/esp-idf/components/esp32/ld -T esp32.ld -T esp32.common.ld -T
esp32.rom.ld -T esp32.peripherals.ld -lexpat -lfreertos -Wl,--
undefined=uxTopUsedPriority -ljson -llog -llwip -lmbedtls
/home/pi/projects/esp32/esp-idf/components/newlib/lib/libc.a
/home/pi/projects/esp32/esp-idf/components/newlib/lib/libm.a -lnghttp -lnvs_flash
-lspi_flash -ltcpip_adapter -lmain -lgcc -Wl,--end-group -Wl,-EL -o
/home/pi/projects/esp32/apps/parallel1/build/app-template.elf -Wl,-
Map=/home/pi/projects/esp32/apps/parallel1/build/app-template.map

• xtensa-esp32-elf-gcc – The compiler for the Xtensa architecture which also
knows how to link.

• -nostdlib – Do not link with the standard startup files and libraries.

• -L <various> – Specify the directories which should be searched for library files.

• -u call_user_start_cpu0 – Pretend that the symbol called.
"call_user_start_cpu0" is undefined to force the linker to resolve it.

• -Wl,--gc-sections – Garbage collect unused input sections.

• -Wl,-static – Do not link against shared libraries.

• -Wl,--start-group – Start a group of archives. Used to resolve circular
references.

• -Wl,-EL – Link in little-endian format.

• <various libraries> – Link with the named libraries.

• -Wl,--end-group – End a group of archives.

• -T esp32.ld – Use a Linker script. Found in ESP_IDF/components
/esp32/ld/esp32.ld.

• -T esp32.common.ld – Use a Linker script. Found in ESP_IDF/components
/esp32/ld/esp32.common.ld.

Page 103

• -T esp32.rom.ld – Use a Linker script. Found in ESP_IDF/components
/esp32/ld/esp32.rom.ld.

• -T esp32.peripherals.ld – Use a Linker script. Found in
ESP_IDF/components/esp32/ld/esp32.peripherals.ld.

• -o <filename> – Write the result to the named file.

• -Wl,-Map=<filename> – Write a link map to the named file.

Linked libraries:

• -lbt – build/bt/libbt.a

• -lbtdm_app – ESP_IDF/components/bt/lib/libbtdm_app.a

• -ldriver – build/driver/libdriver.a

• -lesp32 – build/esp32/libesp32.a

• libhal.a – ESP_IDF/components/esp32/libhal.a

• -lcrypto – ESP_IDF/components/esp32/lib/libcrypto.a

• -lcore – ESP_IDF/components/esp32/lib/libcore.a

• -lnet80211 – ESP_IDF/components/esp32/lib/libnet80211.a

• -lphy – ESP_IDF/components/esp32/lib/libphy.a

• -lrtc – ESP_IDF/components/esp32/lib/librtc.a

• -lpp – ESP_IDF/components/esp32/lib/libpp.a

• -lwpa – ESP_IDF/components/esp32/lib/libwpa.a

• -lwps – ESP_IDF/components/esp32/lib/libwps.a

• -lexpat – build/expat/libexpat.a

• -lfreertos – build/freertos/libfreertos.a

• -ljson – build/json/libjson.a

• -llog – build/log/liblog.a

• -llwip – build/lwip/liblwip.a

• -lmbedtls – build/mbedtls/libmbedtls.a

• libc.a – ESP_IDF/components/newlib/lib/libc.a

• libm.a – ESP_IDF/components/newlib/lib/libm.a

Page 104

• -lnghttp – build/nghttp/libnghttp.a

• -lnvs_flash – build/nvs_flash/libnvs_flash.a

• -lspi_flash – build/spi_flash/libspi_flash.a

• -ltcpip_adapter – build//tcpip_adapter/libtcpip_adapter.a

• -lmain – Project files

• -lgcc

Flashing over the air – FOTA
Imagine that you have built a fantastic ESP8266 application that is contained within an
embedded device. You ship it to your customers and all is great. Suddenly, you start to
get reports that it is periodically failing. You diagnose the error and to your horror, you
find that there was coding mistake … but thankfully, it is easily and quickly fixed. You
now find that you have a problem. Your embedded device doesn't have a UART
exposed and, even if it did, your customers would be up in arms if they had to plug it
into a computer. Worse, it would become a support nightmare to walk consumers
through the mechanics of achieving a reload when we made no assumptions about the
technical skills of the end consumer.

To resolve this issue, we introduce the concept of flashing (or more specifically re-
flashing) an application over the internet through a WiFi connection. This notion is
called "Flashing Over The Air" or FOTA.

Generically, it works as follows.

Your ESP8266 has an amount of flash memory available to it. Let us divide that
memory into two equal halves.

When an ESP8266 ships, your application will be loaded into the 1st half of flash and will
ignore the second half. From time to time, it will "call home" via the Internet and ask if
there is a replacement set of firmware (a new version). If there is, then it will download
that new firmware into the 2nd half of flash. If that fully succeeds, the device will reboot
and start running the new firmware from the 2nd half of flash … it will now ignore the 1st
half. A subsequent replacement of the firmware with yet another version will be loaded
into the 1st half and the story repeats.

Page 105

Effectively, we are thus able to flip-flop between two versions. With this high level
theory under our belts, let us now dig a little deeper. Obviously, if we follow this story,
we see that we have effectively reduce the amount of flash available to host our
programs by half. That doesn't sound good … why do we do this? The answer is
actually quite simple. If we consider the reality that WiFi connections can fail, Internet
access can be lost and power can simply be removed from a device, we can end up in
the situation where an upload of new code into flash actually fails before it completes.
This would leave us with broken code in the flash area. If we tried to "in-place" replace
our existing application and such a failure occurred, we would have "bricked" the
device. It is likely that a replaced application that was only half loaded wouldn't even
boot. To circumvent that issue, the ESP8266 contains a flag which defines which of the
two possible halves of firmware is currently the one used to execute the program. Only
when a new version of the firmware has been validated as having been successfully
loaded is the flag switched to the other half. If an error occurs during the replacement
upload, then the flag is not switched and no harm will have been done since we had
effectively ignored the second half of flash in the first place.

Let us now go even deeper. Espressif provides code called "boot" which is responsible
for booting an ESP8266. When an ESP8266 is powered on, it is this boot code that
gets control. It is boot which determines how the remainder of the power-on of the
device will proceed. When we flash an ESP8266, we should provide both the boot
application and our own application logic. From an address space perspective, the boot
program is loaded into flash address 0x00000 for 4KBytes. Our application will be
loaded from address 0x01000 onwards.

Since the ESP8266 can have a variety of flash sizes, we examine each of these in turn.

512KB flash

Page 106

Content Address Size

Boot 0x0 0000 – 0x0 0FFF 4KB

App 1 (user1.bin) 0x0 1000 – 0x3 BFFF 236KB

User params 0x3 C000 – 0x3 FFFF 16KB

Do not use 0x4 0000 – 0x4 0FFF 4KB

App 2 (user2.bin) 0x4 1000 – 0x7 BFFF 236KB

System params 0x7 C000 – 0x7 FFFF 16KB

1024KB Flash

Content Address Size

Boot 0x0 0000 – 0x0 0FFF 4KB

App 1 (user1.bin) 0x0 1000 – 0x7 BFFF 492KB

User params 0x7 C000 – 0x7 FFFF 16KB

Do not use 0x8 0000 – 0x8 0FFF 4KB

App 2 (user2.bin) 0x8 1000 – 0xF BFFF 492KB

System params 0xF C000 – 0xF FFFF 16KB

2048KB Flash – Option 1

Content Address Size

Boot 0x00 0000 – 0x00 0FFF 4KB

App 1 (user1.bin) 0x00 1000 – 0x07 BFFF 492KB

User params 0x07 C000 – 0x07 FFFF 16KB

Do not use 0x08 0000 – 0x08 0FFF 4KB

App 2 (user2.bin) 0x08 1000 – 0x0F BFFF 492KB

User Data 0x0F C000 – 0x1F BFFF 1008KB

System params 0x1F C000 – 0x1F FFFF 16KB

2048KB Flash – Option 2

Page 107

Content Address Size

Boot 0x00 0000 – 0x00 0FFF 4KB

App 1 (user1.bin) 0x00 1000 – 0x07 BFFF 1004KB

User params 0x0F C000 – 0x0F FFFF 16KB

Do not use 0x10 0000 – 0x10 0FFF 4KB

App 2 (user2.bin) 0x10 1000 – 0x1F BFFF 1004KB

System params 0x1F C000 – 0x1F FFFF 16KB

4096KB Flash – Option 1

Content Address Size

Boot 0x00 0000 – 0x00 0FFF 4KB

App 1 (user1.bin) 0x00 1000 – 0x07 BFFF 492KB

User params 0x07 C000 – 0x07 FFFF 16KB

Do not use 0x08 0000 – 0x08 0FFF 4KB

App 2 (user2.bin) 0x08 1000 – 0x0F BFFF 492KB

User Data 0x0F C000 – 0x3F BFFF 3072KB

System params 0x3F C000 – 0x3F FFFF 16KB

4096KB Flash – Option 2

Content Address Size

Boot 0x00 0000 – 0x00 0FFF 4KB

App 1 (user1.bin) 0x00 1000 – 0x07 BFFF 1004KB

User params 0x0F C000 – 0x0F FFFF 16KB

Do not use 0x10 0000 – 0x10 0FFF 4KB

App 2 (user2.bin) 0x10 1000 – 0x1F BFFF 1004KB

User Data 0x1f C000 – 0x3F BFFF 2048KB

System params 0x3F C000 – 0x3F FFFF 16KB

See also:

• Espressif document: 99C – ESP8266 – OTA Upgrade

Page 108

Debugging
When writing programs, we may find that they don't always run as expected.
Performing debugging on an SOC can be difficult since we have no readily available
source level debuggers.

ESP-IDF logging
The ESP-IDF framework provides a logging set of features. These logging items can
then be inserted in your own application for diagnosing problems or capturing traces.

To use the logging functions, we must include "esp_log.h".

The high level logging function is called "esp_log_write()" which has the following
signature:

void esp_log_write(esp_log_level_t level, const char *tag, const char * format, …)

Think of it like a specialized printf logger. The format and following parameters follow
the printf style convention.

When we wish to log a message, we choose a log level to write to. The log levels
available are:

• ESP_LOG_NONE

• ESP_LOG_ERROR

• ESP_LOG_WARN

• ESP_LOG_INFO

• ESP_LOG_DEBUG

• ESP_LOG_VERBOSE

The logged output is of the format:

<log level> (<time stamp>) <tag>: <message>

Where log level is one of "E", "W", "I", "D" or "V". The time stamp is the number of
milliseconds since boot.

We also have a global setting which is the maximum log level we should log. For
example if we set ESP_LOG_WARN then messages at level ESP_LOG_WARN, ESP_LOG_ERROR
will be logged but ESP_LOG_INFO, ESP_LOG_DEBUG and ESP_LOG_VERBOSE will be excluded.

The tag parameter to the logging function provides an indication of which logical
component/module issues the message. This provides context to what otherwise might
be ambiguous messages.

C language macros are provided to make using the logging simpler. The macros are:

• ESP_LOGE(tag, format, …) - Log an error.

Page 109

• ESP_LOGW(tag, format, …) - Log a warning.

• ESP_LOGI(tag, format, …) - Log information.

• ESP_LOGD(tag, format, …) - Log debug.

• ESP_LOGV(tag, format, …) - Log verbose information.

Since logging is included or excluded at compile time, we can specify the logging level
to include in our builds. At compile time, this may exclude certain log statements from
the source. The compilation flag -DLOG_LOCAL_LEVEL controls the logging levels
included.

For the log statements that remain in the code after compilation that were not excluded
at build time, we can control the log level at run-time by calling esp_log_level_set().
The signature of this function is:

void esp_log_level_set(const char *tag, esp_log_level_t level)

The tag names the logging groups that we will show. If the special tag of name "*" is
supplied, this matches all tags.

If we are writing interrupt handling routines, do not use these logging functions within
those.

• Error handling

Logging to UART1
We can insert diagnostic statements using os_printf(). This causes the text and data
associated with these functions to be written to UART1 (GPIO 2). If we attach a USB →
UART device in the circuit, we can then look at the data logged. In my development
environment I always have two USB → UART devices in play. One to flash new
applications and one to use for diagnostic output.

The OS is also able to write debugging information. By default this is on but can be
switched off with a call to system_set_os_print().

See also:

• USB to UART converters
• Working with serial
• system_set_os_print

Run a Blinky
Physically looking at an ESP8266 there isn't much to see that tells you all is working
well within it. There is a power light and a network transmission active light … but that's
about it. A technique that I recommend is to always have your device perform execute a

Page 110

"blinking led" which is commonly known as a "Blinky". This can be achieved by
connecting a GPIO pin to a current limiting resistor and then to an LED. When the
GPIO signal goes high, the LED lights. When the GPIO signal goes low, the LED
becomes dark. If we define a timer callback that is called (for example) once a second
and toggles the GPIO pin signal value each invocation, we will have a simple blinking
LED. You will be surprised how good a feeling it will give simply knowing that
something is alive within the device each time you see it blink.

The cost of running the timer and changing the I/O value to achieve a blinking should
not be a problem during development time so I wouldn't worry about side effects of
doing this. Obviously for a published application, you may not desire this and can
simply remove it.

However, although this is a trivial circuit, it has a lot of uses during development. First,
you will always know that the device is operating. If the LED is blinking, you know the
device has power and logic processing control. If the light stops blinking, you will know
that something has locked up or you have entered an infinite loop.

Another useful purpose for including the Blinky is to validate that you have entered flash
mode when programming the device. If we understand that the device can boot up in
normal or flash mode and we boot it up in flash mode, then the Blinky will stop
executing. This can be useful if you are using buttons or jumpers to toggle the boot
mode as it will provide evidence that you are not in normal mode. On occasion I have
mis-pressed some control buttons and was quickly able to realize that something was
wrong before even attempting to flash it as the Blinky was still going.

Here is some simple code for setting up a Blinky. In this example we use GPIO4 as the
LED driver. First, the code we place in user_init:

PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO4_U, FUNC_GPIO4);
os_timer_disarm(&blink_timer);
os_timer_setfn(&blink_timer, (os_timer_func_t *)blink_cb, (void *)0);
os_timer_arm(&blink_timer, 1000, 1);

This assumes a global called blink_timer defined as:

LOCAL os_timer_t blink_timer;

The callback function in this example is called blink_cb and looks like:

LOCAL void ICACHE_FLASH_ATTR blink_cb(void *arg)
{

led_state = !led_state;
GPIO_OUTPUT_SET(4, led_state);

}

The global variable called led_state contains the current state of the LED (1=on, 0=off):

LOCAL uint8_t led_state=0;

Page 111

Dumping IP Addresses
Being a WiFi and TCP/IP device, you would imagine that the ESP8266 works a lot with
IP addresses and you would be right. We can generate a string representation of an IP
address using:

os_printf(IPSTR, IP2STR(pIpAddrVar))

the IPSTR macro is "%d.%d.%d.%d" so the above is equivalent to:

os_printf("%d.%d.%d.%d", IP2STR(pIpAddrVar))

which may be more useful in certain situations.

See also:

• ipaddr_t

Exception handling
At run-time, things may not always work as expected and an exception can be thrown.
For example, you might attempt to access storage at an invalid location or write to read
only memory or perform a divide by zero.

When such an occurrence happens, the device will reboot itself but not before writing
some diagnostics to UART1. Diagnostics may look like:

Fatal exception (28):
epc1=0x40243182, epc2=0x00000000, epc3=0x00000000, excvaddr=0x00000050,
depc=0x00000000

The codes are as follows:

• exccause – Code describing the cause

• epc1 – Exception program counter

• excvaddr – Virtual address that caused the most recent fetch, load or store
exception. For example, if a write to memory occurs and that memory is not
RAM an exception will be thrown and the value here will be the address that was
attempted to be written.

The primary exception codes are:

Code Code Cause name

0 0x00 IllegalInstructionCause

1 0x01 SyscallCause

2 0x02 InstructionFetchErrorCause

3 0x03 LoadStoreErrorCause

4 0x04 Level1InterruptCause

Page 112

5 0x05 AllocaCause

6 0x06 IntegerDivideByZeroCause

7 0x07 Reserved

8 0x08 PrivilegedCause

9 0x09 LoadStoreAlignmentCause

10 0x0a Reserved

11 0x0b Reserved

12 0x0c InstrPIFDataErrorCause

13 0x0d LoadStorePIFDataErrorCause

14 0x0e InstrPIFAddrErrorCause

15 0x0f LoadStorePIFAddrErrorCause

16 0x10 InstTLBMissCause

17 0x11 InstTLBMultiHitCause

18 0x12 InstFetchPrivilegeCause

19 0x13 Reserved

20 0x14 InstFetchProhibitedCause

21 0x15 Reserved

22 0x16 Reserved

23 0x17 Reserved

24 0x18 LoadStoreTLBMissCause

25 0x19 LoadStoreTLBMultiHitCause

26 0x1a LoadStorePrivilegeCause

27 0x1b Reserved

28 0x1c LoadProhibitedCause

29 0x1d StoreProhibitedCause

30 0x1e Reserved

31 0x1f Reserved

32-39 0x20-0x27 CoprocessornDisabled

40-63 0x28-0x3f Reserved

If we know the location of the exception, we can analyze the executable (app.out) to
figure out what piece of code caused the problem. For example:

xtensa-lx106-elf-objdump -x app.out -d

Page 113

When an exception is detected on an ESP32, a register dump is performed on the
primary serial output. For example the text may look like:

Guru Meditation Error of type LoadProhibited occured on core 0. Exception was un-
handled.
Register dump:
PC : 400f835d PS : 00060a30 A0 : 800f83e9 A1 : 3ffc45a0
A2 : 3f4084bc A3 : 3ffc4738 A4 : 00000001 A5 : 00000000
A6 : 3ffb013c A7 : 00000001 A8 : df405982 A9 : 3ffc4550
A10 : ffffffff A11 : 3ffc4738 A12 : 000000ba A13 : 0000002b
A14 : 0000001b A15 : 00000001 SAR : 00000020 EXCCAUSE: 0000001c
EXCVADDR: df405986 LBEG : 4000c28c LEND : 4000c296 LCOUNT : 00000000
Rebooting...

If we know the location of the exception, we can analyze the executable (app.out) to
figure out what piece of code caused the problem.

xtensa-esp32-elf-objdump -x app-template.elf -d

Another option is to load the binary with GDB as in:

xtensa-esp32-elf-gdb app-template.elf

From there we can run:

info symbol 0x<address>

This will return an indication of where within the code an error was detected. Here is an
example:

(gdb) info symbol 0x400f8806
initSockets + 114 in section .flash.text

This showed that an exception occurred within my "initSockets" function (which was
indeed the case).

If we then run:

list *0x<address>

it will show us the source line number and lines. Here is another example:

(gdb) list *0x400f8806
0x400f8806 is in initSockets
(/home/pi/projects/esp32/apps/myapp/main/./app_main.c:54).
49
50 struct sockaddr_in clientAddress;
51 socklen_t clientAddressLength = sizeof(clientAddress);
52 int clientSock = accept(sock, (struct sockaddr *)&clientAddress,
&clientAddressLength);
53 checkSocketRC(clientSock, "accept");
54 printf("Accepted a client connection\n");
55 }
56
57 static void dumpState() {
58 esp_err_t err;

See also:

Page 114

• system_get_rst_info
• struct rst_info

Using a debugger (GDB)
GDB is the GNU Debugger and is an excellent tool for debugging compiled C source
code. However, it is primarily designed to debug OS hosted applications such as those
compiled for Windows or Linux and didn't have much applicability to the ESP8266. This
was until Espressif released their GDB stub.

The version of the debugger must be the xtensa-lx106-elf-gdb tool.

To prepare for using the tool, one must compile with the following additional flags:

• -ggdb

• -Og

In addition, we must initialize GDB with a call to gdbstub_init() somewhere early in the
start up code in our application. Finally, we link in the gdbstub library.

See also:

• Github: espressif/esp-gdbstub

Debugging and testing TCP and UDP connections
When working with TCP/IP, you will likely want to have some applications that you can
use to send and receive data so that you can be sure the ESP8266 is working. There
are a number of excellent tools and utilities available and these vary by platform and
function.

Android – Socket Protocol
The Socket Protocol is a free Android app available from the Google play app store.
See:

• https://play.google.com/store/apps/details?id=aprisco.app.android

Android – UDP Sender/Receiver
The UDP Sender/Receiver is another free Android app available from the Google play
app store. What makes this one interesting is its ability to be a UDP (as opposed to
TCP) sender and receiver. See:

• https://play.google.com/store/apps/details?id=com.jca.udpsendreceive

Page 115

https://play.google.com/store/apps/details?id=com.jca.udpsendreceive
https://play.google.com/store/apps/details?id=aprisco.app.android
https://github.com/espressif/esp-gdbstub

Windows – Hercules
Hercules is an older app for Windows that still seems to work just fine on the latest
releases. It looks a little old in the tooth now but still seems to get the job done just fine.
See:

• http://www.hw-group.com/products/hercules/index_en.html

Curl
Curl is powerful and comprehensive command line tool for performing any and all URL
related commands. It can transmit HTTP requests of all different formats and receive
their responses. It has a bewildering set of parameters available to it which is both a
blessing and curse. You can be pretty sure that if it can be done, Curl can do it …
however be prepared to wade through a lot of documentation.

See also:

• Curl

Eclipse – TCP/MON
One of the most powerful and useful tools available is called TCP/IP Monitor that is
supplied as part of Eclipse and distributed with the "Eclipse Web Developer Tools".
The TCP/IP monitor is opened through the Eclipse view called "TCP/IP Monitor".

If you can't find it in the view finder, the chances are high that you haven't installed
"Eclipse Web Developer Tools". Once launched, open its properties pane:

Page 116

http://www.hw-group.com/products/hercules/index_en.html

From there you can add local listeners. These will be TCP/IP listeners that listen on a
local port where Eclipse is running. During configuration, you specify another IP
address and port number. When TCP traffic now arrives at the listener on which TCP/IP
Monitor is watching, it will forward that traffic to the partner while at the same time
logging it to the TCP/IP Monitor screen.

For example, here TCP/IP Monitor is listening on 192.168.1.2 (localhost) which is where
Eclipse is running. It is listening on port 9999. When TCP/IP traffic arrives at that
address, it will be sent onwards to 192.168.1.17 (which happens to be my ESP8266
device) to port 80.

Page 117

Here is an example of log I saw when sending a browser request:

As you can see, the information captured here is powerful stuff. We can see each traffic
request, its content and HTTP headers.

httpbin.org
When testing HTTP protocols, connecting to the web site at http:// htt p bin.org can be
invaluable. It provides a host of services for testing HTTP requests.

ESP8266 Architecture
To start thinking about writing applications for the ESP8266, we need to understand the
high level architecture of the device.

Custom programs
Custom programs are applications that you can write and are the core focus of this
book. These programs can be written in C or C++ and then compiled into the binary
files. The programs are expected to have "well known" functions defined within that
serve as architected entry points and callbacks.

Programmers write a C language file with a suggested name of "user_main.c".
Contained within is a function with the signature:

void user_init(void)

This provides the initial entry into application code. It is called once during startup.
While executing within this function, realize that not all of the environment is yet
operational. If you need a fully functioning environment, register a callback function that

Page 118

http://httbin.org/
http://httbin.org/
http://httbin.org/
http://httbin.org/

will be invoked when the environment is 100% ready. This callback function can be
registered with a call to system_init_done_cb.

RF initialization must also be provided via:

void user_rf_pre_init(void)

When running in user code, we need to be sensitive that the primary purpose of the
device is network communications. Since these are handled in the software, when user
code gets control, that simply means that networking code doesn't. Since we only have
one thread of control, we can't be in two places at once. The recommended duration to
spend in user code at a single sitting is less than 10msecs.

See also:

• system_init_done_cb

WiFi at startup
The ESP8266 stores WiFi start-up information in flash memory. This allows it to
perform its functions at start-up without having to ask the user for any special or
additional information. In my opinion, this is more trouble than it is worth. If I am going
to write an ESP8266 application, I want to control when, how and to what it will connect
or be an access point. Thankfully, there is a function called
wifi_station_set_auto_connect() and its partner called
wifi_station_get_auto_connect(). These allow us to override the auto connection
functions when we are a station.

Working with WiFi – ESP8266
The ESP8266 can either be a station in the network, an access point for other devices
or both. This is a fundamental consideration and we will want to choose how the device
behaves early on in our design. Once we have chosen what we want, we set a global
mode property which indicates which of the operational modes our device will perform
(station, access point or station AND access point).

Scanning for access points
If the ESP8266 is performing the role of a station we will need to connect to an access
point. We can request a list of the available access points against which we can
attempt to connect. We do this using the wifi_station_scan() function. This function
takes a callback function pointer as one of its parameters. This callback will be invoked
when the scan has completed. The callback is necessary because it can take some
time (a few seconds) for the scan to be performed and we can't afford to block operation

Page 119

of the system as a whole until complete. The scan callback function receives a linked
list of BSS structures. Contained within a BSS structure are:

• The SSID for the network

• The BSSID for the access point

• The channel

• The signal strength

• … others

For example:

void scanCB(void *arg, STATUS status) {
struct bss_info *bssInfo;
bssInfo = (struct bss_info *)arg;
// skip the first in the chain … it is invalid
bssInfo = STAILQ_NEXT(bssInfo, next);
while(bssInfo != NULL) {

os_printf("ssid: %s\n", bssInfo->ssid);
bssInfo = STAILQ_NEXT(bssInfo, next);

}
}

//...
{

// Ensure we are in station mode
wifi_set_opmode_current(STATION_MODE);

// Request a scan of the network calling "scanCB" on completion
wifi_station_scan(NULL, scanCB);

}

Note the use of the STAILQ_NEXT() macro to navigate to the next entry in the list. The
end of the list is indicated when this returns NULL.

See also:

• Sample – WiFi Scanner
• struct bss_info
• STATUS

Defining the operating mode
The ESP8266 can execute as a WiFi Station, a WiFi access point or both a station and
an access point. These are considered the three possible global operating modes. The
operating mode that is used when the device boots is retained in flash memory but can
be changed with a call to wifi_set_opmode(). This will change the current mode as well
as record the mode to be used on next restart. To merely change the mode without
changing the next boot mode, we can use wifi_set_opmode_current(). To retrieve the
current mode, we can use wifi_get_opmode() and to retrieve the mode used on boot,

Page 120

we can use wifi_get_opmode_default(). Quite why we have the option to change the
current mode without saving it in flash memory is a mystery. Presumably there is some
occasion when such a feature was needed and thus exposed but what ever that reason
may be is not obvious.

See also:

• wifi_get_opmode
• wifi_get_opmode_default

Handling WiFi events
During the course of operating as a WiFi device, certain events may occur that
ESP8266 needs to know about. These may be of importance or interest to the
applications running within it. Since we don't know when, or even if, any events will
happen, we can't have our application block waiting for them to occur. Instead what we
should do is define a callback function that will be invoked should an event actually
occur. The function called wifi_set_event_handler_cb() does just that. It registers a
function that will be called when the ESP8266 detects certain types of WiFi related
events. The registered function is invoked and passed a rich data structure that
includes the type of event and associated data corresponding to that event. The types
of events that cause the callback to occur are:

• We connected to an access point

• We disconnected from an access point

• The authorization mode changed

• We got a DHCP issued IP address

• A station connected to us when we are in Access Point mode

• A station disconnected from us when we are in Access Point mode

Here is an example of an event handler function that simply logs the name of the event
that was seen:

void eventHandler(System_Event_t *event) {switch(event->event) {
 case EVENT_STAMODE_CONNECTED:
 os_printf("Event: EVENT_STAMODE_CONNECTED\n");
 break;
 case EVENT_STAMODE_DISCONNECTED:
 os_printf("Event: EVENT_STAMODE_DISCONNECTED\n");
 break;
 case EVENT_STAMODE_AUTHMODE_CHANGE:
 os_printf("Event: EVENT_STAMODE_AUTHMODE_CHANGE\n");
 break;
 case EVENT_STAMODE_GOT_IP:
 os_printf("Event: EVENT_STAMODE_GOT_IP\n");
 break;

Page 121

 case EVENT_SOFTAPMODE_STACONNECTED:
 os_printf("Event: EVENT_SOFTAPMODE_STACONNECTED\n");
 break;
 case EVENT_SOFTAPMODE_STADISCONNECTED:
 os_printf("Event: EVENT_SOFTAPMODE_STADISCONNECTED\n");
 break;
 default:
 os_printf("Unexpected event: %d\n", event->event);
 break;
 }
}

The callback function can be registered in user_init() as follows:

wifi_set_event_handler_cb(eventHandler);

We are limited to what we should do in an event handler callback. Specifically, it
appears that we should not try and form new connections. Instead, we should post a
task that we are now able to do additional work.

See also:

• System_Event_t

Station configuration
When we think of an ESP8266 as a WiFi Station, we will realize that at any one time, it
can only be connected to one access point. Putting it another way, there is no meaning
in saying that the device is connected to two or more access points at the same time.

The identity of the access point to which we wish to be associated is known as the
"station_config" and is modeled as the C structure called "struct station_config".
Contained within that structure are two very important fields called "ssid" and
"password". The ssid field is the SSID of the access point to which we will connect.
The password field is the clear text value of the password that will be used to
authenticate our device to the target access point to allow connection.

When booted, the ESP8266 remembers the last station_config we set. We can
explicitly set the station_config data using the function wifi_station_set_config().
This will set the current configuration and save it for later retrieval after a reboot. If we
only wish to set the current station config and not have the information persisted, we
can use the wifi_station_set_config_current().

We should not try and perform any WiFi operations until the device is fully initialized.
We know we are initialized by registering a callback using the system_init_done_cb()
function.

For example:

void initDone() {
 wifi_set_opmode_current(STATION_MODE);

Page 122

 struct station_config stationConfig;
 strncpy(stationConfig.ssid, "myssid", 32);
 strncpy(stationConfig.password, "mypassword", 64);
 wifi_station_set_config(&stationConfig);
}

See also:

• system_init_done_cb
• wifi_station_get_config_default
• wifi_station_set_config_current
• station_config

Connecting to an access point
Once the ESP8266 has been set up with the station configuration details which includes
the SSID and password, we are ready to perform a connection to the target access
point. The function wifi_station_connect() will form the connection. Realize that this
is not instantaneous and you should not assume that immediately following this
command you are connected. Nothing in the ESP8266 blocks and as such neither does
the call to this function. Some time later, we will actually be connected. We will see two
callback events fired. The first is EVENT_STAMODE_CONNECTED indicating that we have
connected to the access point. The second event is EVENT_STAMODE_GOT_IP which
indicates that we have been assigned an IP address by the DHCP server. Only at that
point can we truly participate in communications. If we are using static IP addresses for
our device, then we will only see the connected event.

There is one further consideration associated with connecting to access points and that
is the idea of automatic connection. There is a boolean flag that is stored in flash that
indicates whether or not the ESP8266 should attempt to automatically connect to the
last used access point. If set to true, then after the device is started and without you
having to code any API calls, it will attempt to connect to the last used access point.
This is a convenience that I prefer to switch off. Usually, I want control in my device to
determine when I connect. We can enable or disable the auto connect feature by
making a call to wifi_station_set_auto_connect().

See also:

• Handling WiFi events

Control and data flows when connecting as a station
We are now at the stage where we can draw a sequence flow of the parts. Some
functions you are responsible and must supply including:

• user_init – Entry point into the application

• initDoneCB – Callback when initialization has been completed

Page 123

• eventCB – Callback when a WiFi related event is detected

The other functions we are responsible for calling. We will consider this part of the
sequence completed when we have an indication that we have a valid IP address.

Being an access point
So far we have only considered the ESP8266 as a WiFi station to an existing access
point but it also has the ability to be an access point to other WiFi devices (stations)
including other ESP8266s.

In order to be an access point, we need to define the SSID that that allows other
devices to distinguish our network. This SSID can be flagged as hidden if we don't wish
it to be scanned. In addition, we will also have to supply the authentication mode that
will be used when a station wishes to connects with us. This is used to allow authorized
stations and disallow non-authorized ones. Only stations that know our password will
be allowed to connect. If we are using authentication, then we will also have to choose
a password that the connecting stations will have to know and supply to successfully
connect.

The first task in being an access point is to flag the ESP8266 as such using the
wifi_set_opmode() or wifi_set_opmode_current() functions and pass in the flag that
requests we be either a dedicate access point or an access point and a station.

Here is a snippet of code that can be used to setup and ESP8266 as an access point:

// Define our mode as an Access Point
wifi_set_opmode_current(SOFTAP_MODE);

// Build our Access Point configuration details
os_strcpy(config.ssid, "ESP8266");
os_strcpy(config.password, "password");
config.ssid_len = 0;
config.authmode = AUTH_OPEN;
config.ssid_hidden = 0;
config.max_connection = 4;
wifi_softap_set_config_current(&config);

Page 124

When a remote station connects to the ESP8266 as an access point, we will see a
debug message written to UART1 that may look similar to:

station: f0:25:b7:ff:12:c5 join, AID = 1

This contains the MAC address of the new station joining the network. When the station
disconnects, we will see a corresponding debug log message that may be:

station: f0:25:b7:ff:12:c5 leave, AID = 1

From within the ESP8266, we can determine how many stations are currently
connected with a call to wifi_softap_get_station_num(). If we wish to find the details
of those stations, we can call wifi_softap_get_station_info() which will return a
linked list of struct station_info. We have to explicitly release the storage allocated
by this call with an invocation of wifi_softap_free_station_info().

Here is an example of a snippet of code that lists the details of the connected stations:

uint8 stationCount = wifi_softap_get_station_num();
os_printf("stationCount = %d\n", stationCount);
struct station_info *stationInfo = wifi_softap_get_station_info();
if (stationInfo != NULL) {

while (stationInfo != NULL) {
os_printf("Station IP: %d.%d.%d.%d\n", IP2STR(&(stationInfo->ip)));
stationInfo = STAILQ_NEXT(stationInfo, next);

}
wifi_softap_free_station_info();

}

When an ESP8266 acts as an access point, this allows other devices to connect to it
and form a WiFi connection. However, it appears that two devices connected to the
same ESP8266 acting as an access point can not directly communicate between each
other. For example, imagine two devices connecting to an ESP8266 as an access
point. They may be allocated the IP addresses 192.168.4.2 and 192.168.4.3. We
might imagine that 192.168.4.2 could ping 192.168.4.3 and visa versa but that is not
allowed. It appears that they only direct network connection permitted is between the
newly connected stations and the access point (the ESP8266) itself.

This seems to limit the applicability of the ESP8266 as an access point. The primary
intent of the ESP8266 as an access point is to allow mobile devices (eg. your phone) to
connect to the ESP8266 and have a conversation with an application that runs upon it.

See also:

• wifi_softap_set_config_current
• wifi_softap_get_station_num

Page 125

The DHCP server
When the ESP8266 is performing the role of an access point, it is likely that you will
want it to also behave as a DHCP server so that connecting stations will be able to be
automatically assigned IP addresses and learn their subnet masks and gateways.

The DHCP server can be started and stopped within the device using the APIs called
wifi_softap_dhcps_start() and wifi_softap_dhcps_stop(). The current status
(started or stopped) of the DHCP server can be found with a call to
wifi_softap_dhcps_status().

The default range of IP addresses offered by the DHCP server is 192.168.4.1 upwards.
The first address becomes assigned to the ESP8266 itself. It is important to realize that
this address range is not the same address range as your LAN where you may be
working. The ESP8266 has formed its own network address space and even though
they may appear with the same sorts of numbers (192.168.x.x) they are isolated and
independent networks. If you start an access point on the ESP8266 and connect to it
from your phone, don't be surprised when you try and ping it from your Internet
connected PC and don't get a response.

See also:

• wifi_softap_dhcps_stop

Current IP Address, netmask and gateway
Should we need it, we can query the OS environment for the current IP address,
netmask and gateway. The values of these are commonly set for us by a DHCP server
when we connect to an access point. The function called wifi_get_ip_info() returns
our current information while the function called wifi_set_ip_info() allows us to set
our addresses.

When we connect to an access point and have chosen to use DHCP, when we are
allocated an IP address, an event is generated that can be used as an indication that
we now have a valid IP address.

To correctly setup static IP addresses, in the init_done callback, call
wifi_station_dhcpc_stop() to disable the DHCP client running in the ESP8266. After
this call wifi_station_connect() to start the access point connection phase. When the
event arrives that indicates we are connected to an access point as a station
(EVENT_STAMODE_CONNECTED), we can call wifi_set_ip_info() and pass in the IP
address, gateway and netmask that we wish to use. Note that when we use a static IP
address, we will not receive the callback event that indicates we have received an IP
address (EVENT_STAMODE_GOT_IP) as we already have it.

See also:

Page 126

• Handling WiFi events
• wifi_station_dhcpc_stop
• struct ip_info

WiFi Protected Setup – WPS
The ESP8266 supports WiFi Protected Setup in station mode. This means that if the
access point supports it, the ESP8266 can connect to the access point without
presenting a password. Currently only the "push button mode" of connection is
implemented. Using this mechanism, a physical button is pressed on the access point
and, for a period of two minutes, any station in range can join the network using the
WPS protocols. An example of use would be the access point WPS button being
pressed and then the ESP8266 device calling wifi_wps_enable() and then
wifi_wps_start(). The ESP8266 would then connect to the network.

See also:

• wifi_wps_enable
• wifi_wps_start
• wifi_set_wps_cb
• Simple Questions: What is WPS (WiFi Protected Setup)
• Wikipedia: WiFi Protected Setup

Working with WiFi – ESP32

In the ESP32 environment, we include the header <esp_wifi.h> which provides the
signatures for the WiFi functions we will be using. Prior to working with any WiFi
components, we want to call esp_wifi_init(). This function initializes the WiFi
subsystem. Internally it will allocate resources. We have a partner function called
esp_wifi_deinit() which will destroy our WiFi environment and release the resources.
We should not call any other WiFi functions prior to esp_wifi_init() and call no further
WiFi functions following an esp_wifi_deinit(). There is a mandatory parameter to the
esp_wifi_init() which is a pointer to an instance of wifi_init_config_t. We can
supply a useful default to this call using the WIFI_INIT_CONFIG_DEFAULT macro.

wifi_init_config_t config = WIFI_INIT_CONFIG_DEFAULT();
err = esp_wifi_init(&config);

The ESP32 WiFi can be either a station, an access point or station and an access point
at the same time. This choice is set with a call to esp_wifi_set_mode(). The parameter
is an instance of wifi_mode_t which can have a value of WIFI_MODE_NULL,
WIFI_MODE_STA, WIFI_MODE_AP or WIFI_MODE_APSTA. We can call
esp_wifi_get_mode() to retrieve our current mode state.

Since an ESP32 can be both a station and an access point, that means it has two
interfaces. Two interfaces means two distinct mac addresses. We can set or get the

Page 127

https://en.wikipedia.org/wiki/Wi-Fi_Protected_Setup
http://www.7tutorials.com/simple-questions-what-wps-wi-fi-protected-setup

values for these 6 byte mac addresses using esp_wifi_set_mac() and
esp_wifi_get_mac(). The first parameter of these calls defines which interface we wish
to interact. The value can either be WIFI_IF_STA for the station interface or WIFI_IF_AP
for the access point interface.

If we are acting as an access point, we can ask what stations are connected to us with a
call to esp_wifi_get_station_list(). This returns us a list of stations that is based on
the ESP32 queuing structure.

Once we have performed an access point scan, the ESP32 has a notion of the access
points out there. We can then ask for a copy of this information. We need to
understand that each access point is identified by a record of type wifi_ap_list_t
which is composed of:

uint8_t bssid[6]

uint8_t ssid[32]

uint8_t primary

wifi_second_chan_t second

int8_t rssi

wifi_auth_mode_t authmode

When we call esp_wifi_get_station_list() we pass in a pointer to storage which will
be populated by these records. We also pass in the maximum number of records we
will accept. On return, we are told how many records were populated. We are
managing the storage for these records and ESP32 neither allocates nor releases this
data.

For example:

wifi_ap_list_t apList[10];
uint16_t count = 10;
esp_wifi_get_station_list(&count, apList);
printf("Number of stations populated = %d\n", count);

When the ESP32 WiFi environment operates, it publishes "events" when something at
the WiFi level occurs such as a new station connecting. We can register a callback
function that is invoked when an event is published. The signature of the callback
function is:

esp_err_t eventHandler(void *ctx, system_event_t *event) {
 // Handle event here ...
 return ESP_OK;
}

Page 128

To register the callback function, we invoke:

esp_event_loop_init(eventHandler, NULL);

When the event handler is invoked, the event parameter is populated with details of the
event. The data type of this parameter is a "system_event_t" which contains:

system_event_id_t event_id

system_event_info_t event_info

We should include "esp_event.h" to gain access to these functions and definitions.

• event_id – An enumeration type with the following potential values:

◦ SYSTEM_EVENT_WIFI_READY – ESP32 WiFi is ready.

◦ SYSTEM_EVENT_SCAN_DONE – Finished scanning for access points. The
scan_done data field is valid to be accessed.

◦ SYSTEM_EVENT_STA_START – Started being a station.

◦ SYSTEM_EVENT_STA_STOP – Stopped being a station.

◦ SYSTEM_EVENT_STA_CONNECTED – Connected to an access point as a station.
The connected data field is valid to be accessed.

◦ SYSTEM_EVENT_STA_DISCONNECTED – Disconnected from access point while
being a station. The disconnected data field is valid to be accessed.

◦ SYSTEM_EVENT_STA_AUTHMODE_CHANGE – Authentication mode has changed.
The auth_change data field is valid to be accessed.

◦ SYSTEM_EVENT_STA_GOT_IP – Got an assigned IP address from the access
point that we connected to while being a station. The got_ip data field is
valid to be accessed.

◦ SYSTEM_EVENT_AP_START – Started being an access point.

◦ SYSTEM_EVENT_AP_STOP – Stopped being an access point.

◦ SYSTEM_EVENT_AP_STACONNECTED – A station connected to us while we are
being an access point. The sta_connected data field is valid to be accessed.

◦ SYSTEM_EVENT_AP_STADISCONNECTED – A station disconnected from us while we
are being an access point. The sta_disconnected data field is valid to be
accessed.

◦ SYSTEM_EVENT_AP_PROBEREQRECVED – Received a probe request while we are
being an access point. The ap_probereqrecved data field is valid to be
accessed.

Page 129

• event_info – This is a C language union of distinct data types that are keyed off
the event_id. The different structures contained within are:

Structure Field Event

system_event_sta_connected_t connected SYSTEM_EVENT_STA_CONNECTED

system_event_sta_disconnected_t disconnected SYSTEM_EVENT_STA_DISCONNECTED

system_event_sta_scan_done_t scan_done SYSTEM_EVENT_SCAN_DONE

system_event_sta_authmode_change_t auth_change SYSTEM_EVENT_STA_AUTHMODE_CHANGE

system_event_sta_got_ip_t got_ip SYSTEM_EVENT_STA_GOT_IP

system_event_ap_staconnected_t sta_connected SYSTEM_EVENT_AP_STACONNECTED

system_event_ao_stadisconnected_t sta_disconnected SYSTEM_EVENT_AP_STADISCONNECTED

system_event_ap_probe_req_rx_t ap_probereqrecved SYSTEM_EVENT_AP_PROBEREQRECVED

These data structures contain information pertinent to the event type received.

system_event_sta_connected_t

uint8_t ssid[32]

uint8_t ssid_len

uint8_t bssid[6]

uint8_t channel

wifi_auth_mode_t authmode

system_event_sta_disconnected_t

uint8_t ssid[32]

uint8_t ssid_len

uint8_t bssid[6]

uint8_t reason

system_event_sta_scan_done_t

uint32_t status

uint8_t number

uint8_t scan_id

system_event_authmode_change_t

wifi_auth_mode_t old_mode

wifi_auth_mode_t new_mode

Page 130

system_event_sta_got_ip_t

tcpip_adapter_ip_info_t ip_info

system_event_ap_staconnected_t

uint8_t mac[6]

uint8_t aid

system_event_ap_stadisconnected_t

uint8_t mac[6]

uint8_t aid

system_event_ap_probe_req_rx_t

int rssi

uint8_t mac[6]

If we enable the correct logging levels, we can see the events arrive and their content.
For example:

D (2168) event: SYSTEM_EVENT_STA_CONNECTED, ssid:RASPI3, ssid_len:6,
bssid:00:00:13:80:3d:bd, channel:6, authmode:3
V (2168) event: enter default callback
V (2174) event: exit default callback

and

D (9036) event: SYSTEM_EVENT_STA_GOTIP, ip:192.168.5.62, mask:255.255.255.0,
gw:192.168.5.1
V (9036) event: enter default callback
I (9037) event: ip: 192.168.5.62, mask: 255.255.255.0, gw: 192.168.5.1
V (9043) event: exit default callback

Working with TCP/IP
TCP/IP is the network protocol that is used on the Internet. It is the protocol that the
ESP8266 natively understands and uses with WiFi as the transport. Books upon books
have already been written about TCP/IP and our goal is not to attempt to reproduce a
detailed discussion of how it works, however, there are some concepts that we will try
and capture.

Page 131

First, there is the IP address. This is a 32bit value and should be unique to every device
connected to the Internet. A 32bit value can be thought of as four distinct 8bit values (4
x 8=32). Since we can represent an 8bit number as a decimal value between 0 and
255, we commonly represent IP addresses with the notation
<number>.<number>.<number>.<number> for example 173.194.64.102. These IP
addresses are not commonly entered in applications. Instead a textual name is typed
such as "google.com" … but don't be misled, these names are an illusion at the TCP/IP
level. All work is performed with 32bit IP addresses. There is a mapping system that
takes a name (such as "google.com") and retrieves its corresponding IP address. The
technology that does this is called the "Domain Name System" or DNS.

When we think of TCP/IP, there are actually three distinct protocols at play here. The
first is IP (Internet Protocol). This is the underlying transport layer datagram passing
protocol. Above the IP layer is TCP (Transmission Control Protocol) which provides the
illusion of a connection over the connectionless IP protocol. Finally there is UDP (User
Datagram Protocol). This too lives above the IP protocol and provides datagram
(connectionless) transmission between applications. When we say TCP/IP, we are not
just talking about TCP running over IP but are in fact using this as a shorthand for the
core protocols which are IP, TCP and UDP and additional related application level
protocols such as DNS, HTTP, FTP, Telnet and more.

The espconn architecture
Because we are not allowed to block control in the ESP8266 for any length of time, we
must register callback functions which will be invoked when some long duration action
has completed or an asynchronous events occurs. For example, when we wish to
receive an incoming network connection, we can't simply wait for that connection to
arrive. Instead, we register a connection callback function and then return control back
to the OS. When the connection eventually arrives in the future, the callback function
that we previously registered is invoked on our behalf.

The following table lists the callback functions that the ESP8266 provides supporting
TCP connections and events.

Register Function Callback Description

espconn_regist_connectcb espconn_connect_callback TCP connected successfully

espconn_regist_disconcb espconn_disconnect_callback TCP disconnected successfully

espconn_regist_reconcb espconn_reconnect_callback Error detected or TCP disconnected

espconn_regist_sentcb espconn_sent_callback Sent TCP or UDP data

espconn_regist_recvcb espconn_recv_callback Received TCP or UDP data

espconn_regist_write_finish espconn_write_finish_callback Write data into TCP-send-buffer

Page 132

See also:

• espconn_regist_connectcb
• espconn_regist_disconcb
• espconn_regist_reconcb
• espconn_regist_sentcb
• espconn_regist_recvcb
• espconn_regist_write_finish

TCP
A TCP connection is a bi-directional pipe through which data can flow in both directions.
Before the connection is established, one side is acting as a server. It is passively
listening for incoming connection requests. It will simply sit there for as long as needed
until a connection request arrives. The other side of the connection is responsible for
initiating the connection and it actively asks for a connection to be formed. Once the
connection has been constructed, both sides can send and receive data. In order for
the "client" to request a connection, it must know the address information on which the
server is listening. This address is composed of two distinct parts. The first part is the
IP address of the server and the second part is the "port number" for the specific
listener. If we think about a PC, you may have many applications on it, each of which
can receive an incoming connection. Just knowing the IP address of your PC is not
sufficient to address a connection to the correct application. The combination of IP
address plus port number provides all the addressing necessary.

As an analogy to this, think of your cell phone. It is passively sitting there until someone
calls it. In our story, it is the listener. The address that someone uses to form a
connection is your phone number which is comprised of an area code plus the
remainder. For example, a phone number of (817) 555-1234 will reach a particular
phone. However the area code of 817 is for Fort Worth in Texas … calling that by itself
is not sufficient to reach an individual … the full phone number is required.

No we will look at how an ESP8266 can set itself up as a listener for an incoming
TCP/IP connection.

We start by introducing an absolutely vital data structure that is called "struct espconn".
This data structure contains much of the "state" of our connection and is passed into
most of our TCP APIs.

We initialize it by setting a number of its fields:

• type – This is the type of connection we are going to use. Since we want to use
a TCP connection as opposed to a UDP connection, we supply ESPCONN_TCP as
the value.

• state – The state of the connection will change over time but we initialize it to
have an initial empty state by supplying ESPCONN_NONE.

Page 133

For example:

struct espconn conn1;

void init() {
 conn1.type = ESPCONN_TCP;
 conn1.state = ESPCONN_NONE;
}

Now we introduce another structure called "esp_tcp". This structure contains TCP
specific settings. For our story, this is where we supply the port number which our TCP
connection will listen upon for client connections. This is supplied in the property called
"local_port".

esp_tcp tcp1;

void init() {
 tcp1.local_port = 25867;
}

Within the struct espconn data type, there is a field called "proto" which is a pointer to
a protocol specific data structure. For a TCP connection, this will be a pointer to an
"esp_tcp" instance … and this is where we get to glue the story together. The full code
becomes:

struct espconn conn1;
esp_tcp tcp1;

void init() {
 tcp1.local_port = 25867;
 conn1.type = ESPCONN_TCP;
 conn1.state = ESPCONN_NONE;
 conn1.proto.tcp = &tcp1;
}

We can now start our server listening for incoming TCP connections using
espconn_accept(). This takes the struct espconn as input which is used to indicate on
what port we should listen (among other things). Here is an example:

espconn_accept(&conn1);

After calling this, the ESP8266 will now be passively listening for incoming TCP
connections on the port specified in the local_port field. It is important to note that
your code does not block waiting for an incoming request. Somewhere in the heart of
the ESP8266 it now know to accept connections on that port. The next question is a
simple one … what happens when a connection eventually arrives?

The answer to that is part of the core architecture of the device and revolves around the
notion of callbacks. In your own application code, it is your responsibility to register a
callback function that will be invoked when the connection arrives. This is where the

Page 134

espconn_regist_connectb() function comes into play. This function registers a user
supplied callback function that will be called when a connection arrives.

void connectCB(void *arg) {
struct espconn *pNewEspConn = (struct espconn *)arg;
… Do something with the new connection

}

{
...
espconn_regist_connectcb(&conn1, connectCB);
espconn_accept(&conn1);

}

Seen as a sequence flow diagram, we can see the relationships between some of the
components. We assume that in the event callback when we have been allocated an IP
address, we then register that we are interested in connections and that we are willing
to accept incoming new connections. Then, at some time in the future, we receive a
new connection request and the connection callback is invoked.

The content of the struct espconn passed into the callback will include the remote IP
address of the partner that connected with us. We can use that information for logging
or for authorization. For example, if the IP address is not one we wish to allow, we can
disconnect at this point using espconn_disconnect(). Realize that this data structure
represents the new connection with the partner that just invoked up and is not the same
as struct espconn that was used to register that we wanted to accept new connections.
A new struct espconn will be passed in for each new connection formed.

This covers the ESP8266 receiving incoming connection requests, but what if it should
desire to form a connection outbound to a remote TCP application? To perform an
outbound connection request we can use the espconn_connect() call. Prior to making
this call, we must set up the TCP structure. The field remote_port must contain the port
number of the application partner to which we wish to connect. In addition the
remote_ip field must contain the IP address of the machine hosting the partner. The
local_port must be assigned an unused local port using espconn_port(). The
local_ip must also be completed using the local IP address. Just like the receiving an
inbound connection, making an outbound connection will result in an invocation to the

Page 135

connection callback when the connection is established. Once the connection has been
formed, once again, the two ends of the connection will be peers of each other. It is
vital to realize that just issuing an espconn_connect() does not result in an immediate
connection. Instead, only after the connectCB has been received can we actually use
the connection.

For example:

struct espconn conn1;
esp_tcp tcp1;

void init() {
 tcp1.remote_port = 25867;
 tcp1.remote_ip = ipAddress;
 tcp1.local_port = espconn_port();
 struct ip_info ipconfig;
 wifi_get_ip_info(STATION_IF, &ipconfig);
 os_memcpy(tcp.local_ip, &ipconfig.ip, 4);

 conn1.type = ESPCONN_TCP;
 conn1.state = ESPCONN_NONE;
 conn1.proto.tcp = &tcp1;
}

If the partner in our conversation should close the connection, we will be informed of
that through the function we register with espconn_regist_disconcb(). The state field
of the struct espconn will contain CLOSE. Detection the graceful shutdown of a partner
allows us to perform logic that we may need such as releasing resources or persisting
data.

If a TCP connection is formed and no traffic flows over the connection for at least 10
seconds (default), then the connection is automatically closed from the ESP8266 end.
The idle connection timeout property can be set with the espconn_regist_time()
function.

The ESP8266 support a maximum of 5 concurrent TCP connections.

See also:

• espconn_accept
• espconn_connect
• espconn_disconnect
• espconn_regist_connectcb
• espconn_regist_disconcb
• espconn_regist_time
• struct espconn
• esp_tcp

Sending and receiving TCP data
At this point, let us now assume that we have a connection between an ESP8266 and a
partner application. Having a connection is great but now we need to have a

Page 136

conversation. Information and data needs to flow in one or both directions. There are
two considerations… we may receive data from the partner or we may wish to send
data to the partner. It is important to note that in TCP, a connection is bidirectional.
Once the connection has been established, either party can send data at any time.
There is no concept of one party having exclusive sending or receiving rights. The
choice of who is the receiver and who is the transmitter is purely up to the design of the
application.

For example, imagine we had a project to turn on an LED at an ESP8266 when it
receives a "1" character and turn it off when it receives a "0" character. In that story, the
ESP8266 would be exclusively a receiver and, simply by our choices, need not transmit
data. The partner would be exclusively a transmitter.

Now let us consider a second example. In this case the ESP8266 is connected to a
temperature sensor and every few seconds it sends the current temperature to the
partner. In that story, the ESP8266 is exclusively a transmitter and the partner only a
receiver.

Finally, we can image an ESP8266 connected to multiple sensors. It receives
commands from the partner as input which it interprets. Based on the received data,
the correct sensor is chosen, its value read and the results transmitted back. In this
story, the ESP8266 is at first a receiver and then becomes a transmitter while the
partner is the opposite.

To receive data from a partner, we register a callback function using
espconn_regist_recvcb(). We pass in the struct espconn that was supplied in the
connected callback that identifies our connection. This registered callback function is
invoked when new data becomes available from the partner. The callback function is
passed a buffer containing the data and an indicator of how much data was received.

The following is an example of logging data that is received over the network:

void recvCB(void *arg, char *pData, unsigned short len) {
struct espconn *pEspConn = (struct espconn *)arg;
os_printf("Received data!! - length = %d\n", len);
int i=0;
for (i=0; i<len; i++) {

os_printf("%c", pData[i]);
}
os_printf("\n");

} // End of recvCB

The function called recvCB() is registered as a callback when data is available for the
connection. With this in mind, we can start running some experiments and the results
will be interesting.

If we send data, we see the callback being invoked as expected. However, as the size
of the data transmitted, which is received by the ESP8266, increases, at about 1460

Page 137

bytes, a strange thing happens. Instead of recvCB() being called once, we see it being
called twice. The first time it gets the first 1460 bytes and the second time it gets what
remains. This is repeated for increments of 1460 byte transmission sizes. For
example, if we send 5000 bytes, recvCB() is called 4 times. The first three times with
1460 bytes of data and the last with 620 bytes giving a total of 5000.

Why would this be? Part of the answer is that the ESP8266 has only a very small
amount of RAM available to it and needs to be able to support parallel connections. As
such, it can apparently throttle the data being sent from the sender until space is
available to process it.

It can't be stressed enough the importance of this concept. Data sent from the server
over a TCP connection is "streamed" to the ESP8266. There is no concept of a unit of
data transmission. Instead data sent in the pipe at the sender will arrive at the
ESP8266 but it may very well arrive at different rates. The order of the transmitted data
is preserved (obviously). In principle, making two transmissions at the sender of 5 bytes
each could result in one receive at the ESP8266 of 10 bytes or just as easily one
receive of 1 byte and one receive of 9 bytes. Don't make any assumptions about the
bracketing of TCP data.

To transmit data to a partner we use the function called espconn_send().

This command takes the struct espconn which identifies which connection to send data
through. The function also takes a pointer to a buffer of data and the length of the data
to send. A vital consideration is that the data to be sent is not sent immediately. When
we call espconn_sent() what we are doing is handing off a buffer of data to be
transmitted at some time in the future. We anticipate this will be a few milliseconds but
it could be longer. We must honor the contract. When the ESP8266 does successfully
transmit the data, a callback will be made to a function that was registered with the
espconn_regist_sentcb(). Only after having seen a confirmation that the last
transmission request has been completed should we execute another espconn_send()
request.

When we ask for data to be transmitted, we provide a pointer to a buffer that contains
the data. It is important to realize that we must maintain that data until after we are sure
its content has been sent. For example, we can't request a transmission and then
immediately dispose off or change the buffer. What we hand off to the OS is a pointer to
a buffer and until the OS tells us that it has finished consuming it, we must maintain its
integrity.

See also:

• espconn_regist_recvcb
• espconn_send

Page 138

Flow control
Consider the notion of an ESP8266 in communication with a partner and the partner is
sending 5K of data per second. Now imagine that the ESP8266 is only processing 1K
of data per second. As you can see, something will go wrong quite quickly. We will
overwhelm the ESP8266 with too much data. What we really want is to institute a flow
control mechanism such that the sender of the data is told to throttle back its delivery of
data to a rate that the ESP8266 can accommodate. The send may choose to buffer
data at its end or else may be told to not send so much data per unit of time by pushing
back to the original transmitting logic.

See also:

• espconn_recv_hold
• espconn_recv_unhold

TCP Error handling
When a connection is formed between two partners it is essential that we realize that
there isn't an actual dedicated underlying connection between them. Instead, there is
only a logical connection that appears to be present over the datagram oriented protocol
of IP. What this might mean is that if one end of the connection abnormally ends, the
other end won't immediately know about it. As an example, if in the real world I make a
phone call to you then your phone indicates to you that we have a connection. If the
battery on my phone dies the telephone network detects that and drops the connection.
Your phone also hangs up and you know we are no longer in communication. In the
TCP world, that doesn't happen. If my "TCP" phone dies, your "TCP" phone isn't told
that mine is gone. You may be left sitting there indefinitely listening to silence and
waiting for me to say something.

To resolve that situation, TCP introduces a concept called "keep-alive". The notion is
very simple. With keep-alive, the two partners periodically exchange a heartbeat
communication with each other. As long as they each hear the heartbeat of the other,
they are both still present. However, if one side of the connection is lost, the heartbeat
request will be sent but no response will arrive at which point, the one sending the
heartbeat will assume that the partner has gone and we can take appropriate cleanup
and shutdown actions.

There is an API available to us to control the keep-alive settings. It is called
espconn_set_keepalive(). It has a number of properties including:

• How long should we wait since the last time we heard from the partner before
sending a heartbeat?

• If no response, how long between subsequent heartbeats?

• How many times should we send a heartbeat until we declare the partner dead?

Page 139

It is recommended that if keep-alive processing is to be used then the keep-alive
settings be made in the callback handler of the connect callback. The keep-alive option
must also be explicitly enabled using the espconn_set_opt() call prior to setting the
keep-alive properties.

If the partner connection is lost, we can detect that by registering a callback function
with espconn_reconnect_callback().

See also:

• espconn_set_keepalive
• espconn_get_keepalive
• espconn_set_opt
• espconn_clear_opt

UDP
If we think of TCP as forming a connection between two parties similar to a telephone
call, then UDP is like sending a letter through the postal system. If I were to send you a
letter, I would need to know your name and address. Your address is needed so that
the letter can be delivered to the correct house while your name ensure that it ends up
in your hands as opposed to someone else who may live with you. In TCP/IP terms, the
address is the IP address and the name is the port number.

With a telephone conversation, we can exchange as much or as little information as we
like. Sometimes I talk, sometimes you talk … but there is no maximum limit on how
much information we can exchange in one conversation. With a letter however, there
are only so many pages of paper that will fit in the envelopes I have at my disposal.

The notion of the mail analogy is how we might choose to think about UDP. The
acronym stands for User Datagram Protocol and it is the notion of the datagram that is
akin to the letter. A datagram is an array of bytes that are transmitted from the sender to
the receiver as a unit. The maximum size of a datagram using UDP is 64KBytes. No
connection need be setup between the two parties before data starts to flow. However,
there is a down side. The sender of the data will not be made aware of a receiver's
failure to retrieve the data. With TCP, we have handshaking between the two parties
that lets the sender know that the data was received and, if not, can automatically
retransmit until it has been received or we decide to give up. With UDP, and just like a
letter, when we send a datagram, we lose sight of whether or not it actually arrives
safely at the destination.

If we wish to receive incoming datagrams, we must register what port number we are
interested in receiving them upon. We achieve that through the poorly named
espconn_create() function. This function causes the ESP8266 to start listening for
incoming datagrams on the local port defined in the struct espconn. After calling this

Page 140

function, you should then call espconn_regist_recvcb() to register a callback function
that will be invoked when a datagram arrives.

Here is a high level example of setting up a UDP listener once an IP address has been
allocated:

struct espconn conn1;
esp_udp udp1;

void setupUDP() {
sint8 err;
conn1.type = ESPCONN_UDP;
conn1.state = ESPCONN_NONE;
udp1.local_port = 25867;
conn1.proto.udp = &udp1;

err = espconn_create(&conn1);
err = espconn_regist_recvcb(&conn1, recvCB);

} // End of setupUDP

Should we wish to stop the ESP8266 from listening for datagrams, we can call the
function called espconn_delete().

Now is a good time to come back to IP addresses and port numbers. We should start to
be aware that on a PC, only one application can be listening upon any given port. For
example, if my application is listening on port 25867, then no other application can also
be listening on that same port … not your application nor another copy/instance of mine.
When an incoming connection or datagram arrives at a machine, it has arrived because
the IP address of the sent data matches the IP address of the device at which it arrived.
We then route within the device based on port numbers. And here is where I want to
clarify a detail. We route within the machine based on the pair of both protocol and port
number.

So for example, if a request arrives at a machine for port 25867 over a TCP connection,
it is routed to the TCP application watching port 25867. If a request arrives at the same
machine for port 25867 over UDP, it is routed to the UDP application watching port
25867. What this means is that we can have two applications listening on the same
port but on different protocols. Putting this more formally, the allocation space for port
numbers is a function of the protocol and it is not allowed for two applications to
simultaneously reserve the same port within the same protocol allocation space.
Although I used the story of a PC running multiple applications, in our ESP8266 the
story is similar even though we just run one application on the device. If your single
application should need to listen on multiple ports, don't try and use the same port with
the same protocol as the second function call will find the first one has already allocated
the port. This is a detail that I am happy for you to forget as you will rarely come across
it but I wanted to catch it here for completeness.

Page 141

Now let us look at what it takes to send a datagram. Similar to other functions, we need
a struct espconn control block. This must be configured to use UDP and name the
remote IP address and port. Once populated, we can then initialize the data structure
with a call to espconn_create() and now we are ready to send data. We use the
espconn_sent() function. When we have sent all our data, we can conclude with an
espconn_delete() to release the resources that the ESP8266 maintains for data
sending.

Here is an example:

struct espconn sendResponse;
esp_udp udp;

void sendDatagram(char *datagram, uint16 size) {
sendResponse.type = ESPCONN_UDP;
sendResponse.state = ESPCONN_NONE;
sendResponse.proto.udp = &udp;
IP4_ADDR((ip_addr_t *)sendResponse.proto.udp->remote_ip, 192, 168, 1, 7);
sendResponse.proto.udp->remote_port = 9876; // Remote port
err = espconn_create(&sendResponse);
err = espconn_send(&sendResponse, "hi123", 5);
err = espconn_delete(&sendResponse);

}

See also:

• espconn_create
• espconn_delete
• espconn_send
• espconn_regist_recvcb
• espconn_regist_sentcb
• struct espconn

Broadcast with UDP
One of the features available to us with UDP is the concept of broadcast. This is the
notion that a sender of data can build a datagram and transmit it such that all the
devices on the same subnet can receive a copy of it. Receivers choose a UDP port and
start listening upon it just as they normally would. A transmitting application transmits a
message on the same port but with an IP address where the host part of the IP address
is all binary ones. For example, if we have a netmask of 255.255.255.0 and our
network is 192.168.1.x, then transmitting on the IP address 192.168.1.255 will be a
broadcast. A special IP address of 255.255.255.255 represents a broadcast on our
local network.

For the ESP8266, there is an API called wifi_set_broadcast_if() which determines
which interfaces will be available for broadcast. The choices are the station, the access
point or both the station and access point. A corresponding API called

Page 142

wifi_get_broadtcast_if() can be used to retrieve the current broadcast configuration
state.

See also:

• wifi_set_broadcast_if
• wifi_get_broadcast_if

Ping request
At the TCP/IP level, a device with an IP address can "ping" another device with an IP
address. What this means is that messages are transmitted between them that allows
them to know that they have a route through the network to each other. If the
destination is either not running or no route is available, we will also be informed that
there was a failure.

The ESP8266 provides a structure called struct ping_option that contains the details
of a ping request. This is passed in as a parameter to the function called ping_start()
which initiates the ping. Before calling this function, the target IP address and the
number of ping requests should be set within the struct ping_option.

Two callback functions can be registered with ping_regist_recv() and
ping_regist_sent(). The first is called when a ping response is received and the other
is called when a ping request is sent.

See also:

• ping_start
• ping_regist_recv
• ping_regist_sent
• struct ping_option

Name Service
On the Internet, server machines can be found by their Domain Name Service (DNS)
names. This is the service that resolves a human readable representation of a machine
such as "google.com" into the necessary IP address value (eg. 216.58.217.206). In
order for this transformation to happen, the ESP8266 needs to know the IP address of
one or more DNS servers that it will then use to perform the name to IP address
mapping. If we are using DHCP then nothing else need be done as the DHCP server
automatically provides the DNS server addresses. However, if we should not be using
DHCP, then we need to instruct the ESP8266 of the locations of the DNS servers
manually. We can do this using the espconn_dns_setserver() function. This takes an
array of one or two IP addresses as input and from that point onwards, these servers
will be used for DNS resolution. If two addresses are supplied and the first is
unresponsive, the second will be used.

Page 143

Google publicly makes available two name servers with the addresses of 8.8.8.8 and
8.8.4.4.

Once we have define the nameservers, we can look up the address of a hostname
using the espconn_gethostbyname() function. The return code for this call should be
carefully examined. We may have the address immediately because of a cache or we
may need to perform a network request and provide a callback for later retrieval. If the
later, the ipAddr is returned as NULL … however, your DNS provider may choose to
provide an IP address of a search engine and hence you'll get an address back … but
not the one to the host you expected!!

See also:

• espconn_dns_setserver
• espconn_gethostbyname
• Wikipedia: Domain Name System
• Google: Public DNS

Multicast Domain Name Systems
On a local area network with dynamic devices coming and going, we may want one
device to find the IP address of another device so that they may interact with each
other. The problem though is that IP addresses can be dynamically allocated by a
DHCP server running on a WiFi access point. This means that the IP address of a
device is likely not going to be static. In addition, it is not a great usability to story to
refer to devices by their IP addresses. What we need is some form of dynamic name
service for finding devices by name where their IP addresses aren't administrator
configured. This is where the Multicast Domain Name System (mDNS) comes into play.

At a high level, when a device wishes to find another device with a given name, it
broadcasts a request to all members of the network asking for a response from the
device that has that name. If a machine believes it has that identity, it responds with its
own broadcast which includes its name and IP address. Not only does this satisfy the
original request, but other machines on the network can see this interaction and cache
the response for themselves. This means that should they need to resolve the same
host in the future, they already have the answer.

Using the Multicast Domain Name System (mDNS) an ESP8266 can attempt to resolve
a hostname of a machine on the local network to its IP address. It does this by
broadcasting a packet asking for the machine with that identity to respond.

The name service demons are implemented by Bonjour and nss-mdns (Linux).

Normally, hosts located using this technique belong to a domain ending in ".local".

To determine if your PC is participating in mDNS you can examine whether or not it is
listening on UDP port 5353. This is the port used for mDNS communications.

Page 144

https://developers.google.com/speed/public-dns/
https://en.wikipedia.org/wiki/Domain_Name_System

See also:

• Wikipedia – Multicast DNS
• IETF RFC 6762: Multicast DNS
• Multicast DNS
• New DNS Technologies in the Lan
• Avahi – Implementation of mDNS … source project for Unix machines
• Adafruit – Bonjour (Zeroconf) Networking for Windows and Linux
• chrome.mdns – API description for Chrome API for mDNS
• Android – ZeroConf Browser
• espconn_mdns_init
• espconn_mdns_close
• espconn_mdns_server_register
• espconn_mdns_server_unregister
• espconn_mdns_get_servername
• espconn_mdns_set_servername
• espconn_mdns_set_hostname
• espconn_mdns_get_hostname
• espconn_mdns_disable
• espconn_mdns_enable

Installing Bonjour
Launch the Bonjour installer:

Page 145

https://play.google.com/store/apps/details?id=com.melloware.zeroconf&hl=en
https://developer.chrome.com/apps/mdns
https://learn.adafruit.com/bonjour-zeroconf-networking-for-windows-and-linux
http://www.avahi.org/
http://meetings.ripe.net/ripe-55/presentations/strotmann-mdns.pdf
http://www.multicastdns.org/
http://www.ietf.org/rfc/rfc6762.txt
https://en.wikipedia.org/wiki/Multicast_DNS

Page 146

If all has gone well, we will find a new Windows service running called "Bonjour
Service":

Page 147

Working with SNTP
SNTP is the Simple Network Time Protocol and allows a device connected to the
Internet to learn the current time. In order to use this, you must know of at least one
time server located on the Internet. The US National Institute for Science and
Technology (NIST) maintains a number of these which can be found here:

• http://tf.nist.gov/tf-cgi/servers.cgi

Other time servers can be found all over the globe and I encourage you to Google
search for your nearest or country specific server.

Once you know the identity of a server by its hostname or IP address, you can call
either of the functions called sntp_setservername() or sntp_setserver() to declare that
we wish to use that time server instance. The ESP8266 can be configured with up to
three different time servers so that if one or two are not available, we might still get a
result.

The ESP8266 must also be told the local timezone in which it is running. This is set
with a call to sntp_set_timezone() which takes the number of hours offset from UTC.
For example, I am in Texas and my timezone offset becomes "-5".

With these configured, we can start the SNTP service on the ESP8266 by calling
sntp_init(). This will cause the device to determine its current time by sending
packets over the network to the time servers and examining their responses. It is
important to note that immediately after calling sntp_init(), you will not yet know what
the current time may be. This is because it may take a few seconds for the ESP8266 to
sends the time requests and get their responses and this will all happen asynchronously
to your current commands and won't complete till sometime later.

When ready, we can retrieve the current time with a call to
sntp_get_current_timestamp() which will return the number of seconds since the 1st of
January 1970 UTC. We can also call the function called sntp_get_real_time() which
will return a string representation of the time.

See also:

• sntp_setserver
• sntp_setservername
• sntp_init
• sntp_set_timezone
• sntp_get_current_timestamp
• sntp_get_real_time
• IETF RFC5905: Network Time Protocol Version 4: Protocol and Algorithms Specification

Page 148

https://tools.ietf.org/html/rfc5905
http://tf.nist.gov/tf-cgi/servers.cgi

ESP-NOW
The concept of ESP-NOW is to achieve a private protocol between sets of ESP8266s.
Think of it loosely as a controller/slave relationship where we have one controller and
potentially multiple slaves. The slaves form "persistent" connections to the controller.
What this means is that when a slave ESP8266 is powered on, it is virtually immediately
able to transmit to the controller. Compare this with the notion of the ESP8266
powering on, connecting to the access point and then connecting to the master device.
These flows take timer while ESP-NOW is much faster from a startup.

To start, an ESP8266 which wishes to participate in using this protocol will invoke
esp_now_init(). Should it no longer wish to be part of this kind of network, it can call
esp_now_deinit(). Before communication can proceed, the device will had to add the
peers in the network. This is achieved through a call to esp_now_add_peer().

Each ESP8266 device in the network will declare itself as having a role of either a slave
or a controller through a call to esp_now_set_self_role().

A corresponding esp_now_delete_peer() can be used to forget about a previously
registered peer. When ready to transmit data, a call can be made to esp_now_send()
supplying the address of the recipient as well as the data to be transmitted. The
maximum amount of data that can be currently sent as a unit is 256 bytes.

Two callbacks are available which are invoked when either a new message has been
transmitted or a new message has been received.

See also:

• esp_now_init
• esp_now_send
• esp_now_register_recv_cb

GPIOs
The ESP8266 has 17 GPIO pins. When we think of a GPIO we must realize that at any
one time, each instance has two operational modes. It can either be an input or an
output. When it is an input, we can read a value from it and determine the logic level of
the signal present at the physical pin. When it is an output, we can write a logic level to
it and that will appear as a physical output.

Remember to distinguish between the ESP8266 integrated circuit which is a tiny device:

Page 149

which differs from the various models of breakout board such as the ESP-1:

which has 8 pins exposed, 4 of which are GPIO. The module called ESP-12:

which has 16 pins exposed, 11 of which are GPIO.

For GPIO, here are the exposed mappings:

Page 150

Pin ESP-1 ESP-12

GPIO 0 ● ●

GPIO 1 ● ●

GPIO 2 ● ●

GPIO 3 ● ●

GPIO 4 ●

GPIO 5 ●

GPIO 6

GPIO 7

GPIO 8

GPIO 9

GPIO 10

GPIO 11

GPIO 12 ●

GPIO 13 ●

GPIO 14 ●

GPIO 15 ●

GPIO 16 ●

Totals 4 11

It is also good to remind ourselves of the pin-outs of the device.

As you can see there is no obvious pattern to the layout of the pins and as such you
must take great care when wiring up a circuit. It is easy to make a mistake.

Another vital consideration when working with GPIOs is voltage. The ESP8266 is a
3.3V device. You need to be extremely cautious if you are working with 5V (or above)
partner MCUs or sensors. Unfortunately devices like the Arduino are typically 5V as are

Page 151

USB → UART converters and many sensors. This means you are as likely as not to be
working in a mixed voltage environment. Under no circumstances should you think you
can power the ESP8266 with a direct voltage of more than 3.3V. Obviously, you can
convert higher voltages down to 3.3V but never try and connect a greater voltage
directly. Another subtler consideration is when using GPIOs for signal input and supply
greater than 3.3V as a high signal value. I strongly suggest not doing it. Some folks
may claim you can "get away with it" and if you experiment it may (seem) to work but
you are taking an unnecessary risk for no obviously good reason. If it works … then it
will work till it doesn't at which point it will be too late and you may cook your device.

In my own experiments, I have accidentally over-powered ESP8266s, reverse voltage
powered ESP8266s and applied too high a voltage as input. In each case the result
was a dead chip and in a few cases, attempting to see if it still worked by applying
normal voltage resulted in the device not only not working but getting so hot to the touch
it burned my fingers.

Because accidents happen when building GPIO based circuits, I recommend buying
more ESP8266 instances than you need. That way if you do happen to find yourself
needing a second (or third or fourth) you will have them at your disposal.

Prior to making use of any ESP8266 GPIO functions, you must called the supplied
gpio_init() function. What this actually does is unknown however the rules say call it
and call it we must.

The way that the ESP8266 thinks of GPIOs is as though each GPIO was a bit in a 16bit
array.

(We will come back to how 17 GPIOs maps to 16 bits at a later time)

One array contains an indication of whether or not the GPIO is input or output. We will
call this the direction array. A second array indicates the values of the GPIOs. For input
GPIOs, the value is the value on the pin. For output GPIOs, the value is the value to be
written to the pin. We will call this the value array.

A function is supplied by the ESP8266 called gpio_output_set(). This function takes
four 16 bit values to be used as masks against the two 16 bit arrays.

The first mask is called the "set_mask". A 1 value in the set mask sets the
corresponding bit value to be 1 in the value array.

The second mask is called the "clear_mask". A 1 value in the clear mask sets the
corresponding bit value to be 0 in the value array.

Page 152

Notice that in both cases, if the masks have a 0 value, the original values are
unchanged.

The third mask is called the "enable_output" mask. A 1 value in the enable output mask
sets the corresponding GPIO to be in output mode.

The fourth mask is called the "enable_input" mask. A 1 value in the enable input mask
sets the corresponding GPIO to be in input mode.

Take care not to set a GPIO to be both input and output or to have a value of both 1 and
0. The results will be undefined.

Constants are defined for each of the bit positions. Those constants are:

• BIT0 – 2^0

• BIT1 – 2^1

• …

• BIT31 – 2^31

So, for example. If we want to set GPIO 5 to be input, we might code:

gpio_output_set(0, 0, 0, BIT5);

to set GPIO 4 to be output and have a high value, we might code:

gpio_output_set(BIT4, 0, BIT4, 0);

to set GPIO 0 and 1 to both be output and the first to be 1 and the second to be 0:

gpio_output_set(BIT0, BIT1, BIT0 | BIT1, 0);

If we wish to retrieve the values of the GPIOs, we can use the gpio_input_get()
method. This returns a bit mask containing all the bits.

We have some helper macros that are available. These are useful wrappers around
gpio_output_set() and gpio_input_get().

• GPIO_OUTPUT_SET(GPIO_NUMBER, value) – Sets the corresponding GPIO to be
output and sets its value.

• GPIO_DIS_OUTPUT(GPIO_NUMBER) – Sets the corresponding GPIO to be input
(disabled output).

• GPIO_INPUT_GET(GPIO_NUMBER) – Gets the value of the input GPIO

Since pins on an ESP8266 can serve multiple purposes, we must first declare what
function that pin will have. To do this, we use a macro which sets the function of the
logical pin:

PIN_FUNC_SELECT(pinName, functionUsage)

Page 153

For example, to define GPIO2 as a GPIO pin and set its value, we might code:

PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO2_U, FUNC_GPIO2);
GPIO_OUTPUT_SET(2, 1);

Here is the complete table of mappings.

Pin Name Function 1 Function 2 Function 3 Function 4 Physical pin Devices

MTDI_U MTDI I2SI_DATA HSPIQ MISO GPIO12 10 12

MTCK_U MTCK I2SI_BCK HSPID MOSI GPIO13 12 12

MTMS_U MTMS I2SI_WS HSPICLK GPIO14 9 12

MTDO_U MTDO I2SO_BCK HSPICS GPIO15 13 12

U0RXD_U U0RXD I2SO_DATA GPIO3 25 1, 12

U0TXD_U U0TXD SPICS1 GPIO1 26 1, 12

SD_CLK_U SD_CLK SPICLK GPIO6 21

SD_DATA0_U SD_DATA0 SPIQ GPIO7 22

SD_DATA1_U SD_DATA1 SPID GPIO8 23

SD_DATA2_U SD_DATA2 SPIHD GPIO9 18

SD_DATA3_U SD_DATA3 SPIWP GPIO10 19

SD_CMD_U SD_CMD SPICS0 GPIO11 20

GPIO0_U GPIO0 SPICS2 15 1, 12

GPIO2_U GPIO2 I2SO_WS U1TXD 14 1, 12

GPIO4_U GPIO4 CLK_XTAL 16 12

GPIO5_U GPIO5 CLK_RTC 24 12

The following are the keys to some of the values in the table:

• Devices column

◦ 1=ESP-1

◦ 12=ESP-12

Here are the GPIO pins by mapping:

Page 154

GPIO Pin Name NodeMCU Notes Risk

GPIO0 GPIO0_U D3 Pin controls state of ESP8266 at boot. Caution when used
as an output pin.

GPIO1 U0TXD_U D10 Pin is commonly used for flashing the device.

GPIO2 GPIO2_U D4 Used for UART1 output and, as such, is likely to be used
during development time for debugging. Written to when
flashed with new firmware.

GPIO3 U0RXD_U D9 Pin is commonly used for flashing the device.

GPIO4 GPIO4_U D2 Only use is as a GPIO.

GPIO5 GPIO5_U D1 Only use is as a GPIO.

GPIO6 SD_CLK_U Not exposed on current devices.

GPIO7 SD_DATA0_U Not exposed on current devices.

GPIO8 SD_DATA1_U Not exposed on current devices.

GPIO9 SD_DATA2_U SD2 Not exposed on current devices.

GPIO10 SD_DATA3_U SD3 Not exposed on current devices.

GPIO11 SD_CMD_U Not exposed on current devices.

GPIO12 MTDI_U D6

GPIO13 MTCK_U D7

GPIO14 MTMS_U D5

GPIO15 MTDO_U D8 Used to control UART0 RTS and hence may have an
influence on firmware flashing since the firmware data
arrives via UART0.

GPIO16 ??? D0 ???

The maximum output current from a GPIO pin is only 12mA.

Given a choice, if you are using GPIO0, use it as an input pin as opposed to an output
pin. The reason for this is that when you are developing solutions, you need to bring
GPIO0 low to place the ESP8266 into flash mode where it reads new programs from the
UART. This means that you will be changing the input signal to GPIO0. If you use the
pin as an output, there is the possibility that when you change your wiring to bring it low
or press a button to bring it low, if the signal is high at that time, you will short the circuit.
However, if the pin is input then that won't be a problem. Ideally, avoid using GPIO0
altogether and leave it specifically for bootstrapping the device in different modes.

See also:

• PIN_FUNC_SELECT
• GPIO_OUTPUT_SET
• GPIO_DIS_OUTPUT
• GPIO_INPUT_GET
• gpio_output_set
• gpio_input_get

Page 155

Pullup and pull down settings
We commonly think of an input GPIO pin as having either a high or low signal supplied
to it. This means that it is connected to +ve or ground. But what if it is connected to
neither? In this case, the pin is considered to be in a floating state. There are times
where we wish to defined an unconnected pin as being high or low. An unconnected pin
that is to be considered high is termed "pulled up" while an unconnected pin that is to be
considered low is termed "pulldown". This comes from the physical hardware practice
of attaching resistors to pull up or pull down the signal when it otherwise would be
floating.

In the ESP8266 SDK, we can define a GPIO as being pulled-up by using the macro
called PIN_PULLUP_EN and we can define the GPIO as no longer being pulled up using
the macro PIN_PULLUP_DIS.

GPIO Interrupt handling
If we consider that the signal on a pin can move from high to low or from low to high,
such a change might be something our application would be interested in knowing. To
determine when such a change happens, we can continually poll the value and detect a
transition change. However this in not the best solution for a number of reasons. First,
we have to busily perfom working checking whether a value has changed. Secondly,
there will be a latency from the time the event happens to the time when we check.
Thirdly, it is possible to completely miss a signal change if the duration of the change is
short. For example, if we check the value of a pin and find it high and then immediately
after it goes low and then high again, the next time we poll we will still see the pin high
and never have known that it was ever low for a short period.

The solution to all these problems is the notion of an interrupt. An interrupt is similar to
your doorbell at your house. Without a door bell (or listening for someone knocking)
you would have to periodically check to see if there is anyone at the door. This wastes
your time for the majority of instances where there is no-one there and also makes sure
that when there is someone there, you attend to them in a timely fashion.

In the land of ESP8266s, we can define an interrupt callback function that will be called
when a pin changes its signal value. We can also define what constitutes a reason for
invoking the callback. We can configure the callback handler (technically called an
interrupt handler) on a pin by pin basis.

First, let us consider the interrupt callback function. This is registered with a call to
gpio_intr_handler_register().

Page 156

We can enable or disable interrupt handling on a global level. A call to
ETS_GPIO_INTR_ENABLE enables interrupt handling while a call to ETS_GPIO_INTR_DISABLE
disables global interrupt handling.

To enable an interrupt for a specific pin, we use the function called
gpio_pin_intr_state_set(). This allows us to set the reason that an interrupt might
occur. The reasons include:

• Disable – don't call an interrupt on a signal change.

• PosEdge – Call the interrupt handler on a change from low to high.

• NegEdge – Call the interrupt handler on a change from high to low.

• AnyEdge – Call the interrupt handler on either a change from low to high or a
change from high to low.

• Hi – Call the interrupt handler while the signal is high.

• Lo – Call the interrupt handler while the signal is low.

Notes: When I went to implement an interrupt handler in a project, I found that theory
and practice didn't meet. As of now, the only story I have got working for an interrupt
handler looks as follows:

static void intrHandlerCB(
 uint32 interruptMask, //!< A mask indicating which GPIOs have changed.
 void *arg //!< Optional argument.
) {
 uint32 gpio_status = GPIO_REG_READ(GPIO_STATUS_ADDRESS);
 os_printf("status: 0x%x\n", gpio_status);
 gpio_intr_ack(interruptMask);
 int pin;
 for (pin=0; pin<16; pin++) {
 if ((interruptMask & (1<<pin)) != 0) {
 // Do something
 gpio_pin_intr_state_set(GPIO_ID_PIN(pin), GPIO_PIN_INTR_ANYEDGE);
 }
 }
}

See also:

• gpio_intr_handler_register
• gpio_pin_intr_state_set
• gpio_intr_pending
• gpio_intr_ack

Expanding the number of available GPIOs
Although the ESP devices only have a limited number of GPIO pins, that needn't be a
restriction for us. We have the capability to expand the number of GPIOs available to

Page 157

us through some relatively inexpensive integrated circuits. One of these is called the
PCF8574. (The PFC8574A is the same but has a different set of addresses).

This is an I2C device and hence works over only two wires. Using this IC we supply a 3
bit address (000-111) that is used to select the slave address of the device. Since each
address has 8 IOs and we can have up to 8 devices, this means a total of 64 additional
pins.

It appears that the device will use a pull-up resistor for a high and bring the pin to
ground for low. This means that if we want to use any of the pins for input, we should
set their write mode to high first. This will allow either a high or low input signal to be
detected. It would appear that if we set the output signal to be low and then fed a raw
high signal into the device, we would have a short.

Here is the pin diagram for the device:

Here is a description of the pins:

Symbol Pin Description

A0-A2 1, 2, 3 Addressing

P0-P7 4, 5, 6, 7, 9, 10, 11, 12 Bi directional I/O

INT 13 Interrupt output

SCL 14 Serial Clock Line

SDA 15 Serial Data Line

VDD 16 Supply Voltage (2.5V – 6V)

Vss (Ground) 8 Ground

The address that the slave device can be found upon is configurable via the A0-A2 pins.
It appears at the following address:

Page 158

PCF8574

0 1 0 0 A2 A1 A0

PCF8574A

0 1 1 1 A2 A1 A0

The pins A0-A2 must not float.

This results in the following table:

A2 A1 A0 Address
PCF8574

Address
PCF8574A

0 0 0 0x20 0x38

0 0 1 0x21 0x39

0 1 0 0x22 0x3a

0 1 1 0x23 0x3b

1 0 0 0x24 0x3c

1 0 1 0x25 0x3d

1 1 0 0x26 0x3e

1 1 1 0x27 0x3f

Here is an example program that drives LEDs to create a Cylon effect.

#include <Wire.h>
#include <Ticker.h>
// SDA - Yellow – 4
// CLK - White – 5

#define SDA_PIN 4
#define CLK_PIN 5

Ticker ticker;
int counter = 0;
int dir = 1;

void timerCB() {
Wire.beginTransmission(0x20);
Wire.write(~((uint8_t)1<<counter));
Wire.endTransmission();
counter += dir;
if (counter == 8) {

counter = 6;
dir = -1;

} else if (counter == -1) {
counter = 1;
dir = 1;

Page 159

}
}

void setup()
{

Wire.begin(SDA_PIN,CLK_PIN);
ticker.attach(0.1, timerCB);

}

void loop()
{
}

The corresponding circuit is:

And on a breadboard:

Page 160

See also:

• A video tutorial on this topic
• A class for PCF8574 (RobTillaart/Github)
• 8BIT IO EXPANDER (PCF8574)
• skywodd – PCF8574 Arduino library
• Datasheet – NXP
• Product page – TI
• Working with I2C

•

ESP_PCF8574 C library
A class called ESP_PCF8574 has been written to use the Arduino libraries. The library
can be found on Github.

It provides the following methods:

ESP_PCF8574.begin

Begin the PCF8574 control.

void begin(uint8_t address, uint8_t sda, uint8_t clk)

The address parameter is the I2C address of the PCF8574 … typically 0x20 – 0x27.

The sda and clk parameters are the pin numbers used for I2C SDA and CLK.

ESP_PCF8574.getBit

Retrieve the input of a given bit.

bool getBit(uint8_t bit)

Page 161

https://github.com/nkolban/ESPLibs
http://www.ti.com/product/pcf8574
http://www.nxp.com/documents/data_sheet/PCF8574.pdf
https://github.com/skywodd/pcf8574_arduino_library
http://hackaday.com/2008/12/27/parts-8bit-io-expander-pcf8574/
https://github.com/RobTillaart/Arduino/tree/master/libraries/PCF8574
http://playground.arduino.cc/Main/PCF8574Class
https://www.youtube.com/watch?v=_CKY5WcTQQk

If we think of the 8 GPIOs supplied by the PCF8574 as being 8 bits of data, this method
retrieves the value of data on a given input pin.

ESP_PCF8574.getByte

Retrieve all 8 bits of input.

uint8_t getByte()

If we think of the 8 GPIOs supplied by the PCF8574 as being 8 bits of data, this method
retrieves the value of all the inputs.

ESP_PCF8574.setBit

Set the value of a given output pin.

void setBit(uint8_t bit, bool value)

Set the value of a given output pin.

ESP_PCF8574.setByte

Set the value of all output pins.

void setByte(uint8_t value)

Set the value of all output pins.

PCF8574 JavaScript Library

A JavaScript library has been built for interfacing the PCF8574 from a JavaScript
application.

Invoking from JavaScript is simplicity itself. Since the PCF8574 is merely a simple I2C
board, using the I2C interface is all that is needed.

For example:

var sda = NodeMCU.D1; // Yellow
var scl = NodeMCU.D2; // White
I2C1.setup({scl: scl, sda: sda});
I2C1.writeTo(0x20, value);

Assuming that the address for our PCF8574 is 0x20.

Page 162

Working with I2C
The I2C interface is a serial interface technology for accessing devices. It has two
signal lines called SDA (Data) and SCL (Clock). The ESP8266 can act as a master and
the devices connected downstream act as slaves. Up to 127 distinct slaves are
theoretically attachable. Each slave device has a unique address and the master
decides which slave is to receive data or be allowed to speak next.

All the slaves connected use an "open drain" connection to the bus. This means that
when they connect, their attachment is either open circuit or ground as an output.
Because of this it is impossible for there to be an electrical conflict as it would be
impossible for one device to assert a high signal while another tried to assert a low
signal. The presence of a logical high signal occurs when the current slave device goes
open circuit. This means that we need pull-up resistors on the lines such that when no-
one is actively asserting a low signal, they are pulled-up to a logical high signal. A
resistor value of 4.7KΩ is recommended.

The start of a transmission is indicated when the SCL is left high and SDA is pulled low.
This informs all the slave devices that an address is about to be issued. When the
address is seen by all the slaves, only one of them should match and the other devices
ignore the request.

The address of a slave follows the initial start indication and is comprised of 7 bits with
most significant bit first. Following the 7 bit address is a final 8th bit that indicates
whether this is a read or a write request. A value of 1 indicates a read from the slave
while a value of 0 indicates a write from the master.

Immediately after the 8 bits of address, comes the acknowledgment bit. This bit is not
transmitted from the master to the slave but is instead transmitted from the slave to the
master. Be sure you understand that as when looking at diagrams showing data on the
SDA wire, those diagrams typically do not show the origination of the data, only their
sequence. The turn around time from the last bit of the 8 bit address/direction data sent
from the master to the acknowledgment bit sent from the slave happens without missing
any clock cycles so has to be fast. A value of 0 in the acknowledgment states that the
slave will process or respond. A value of 1 in the acknowledgment states that no-one is
responding or the slave is not present.

Following this addressing frame comes the data frame or frames. For a master write
request, the master will send 8 bits of data and expect a single bit of acknowledgment.
For a read from the slave, the slave will send 9 bits of data (8 data bits and an
acknowledgment).

The master will finally send an end of communication (or stop) indication which is a
transition to high on the clock with NO corresponding transition to low and then a
transition from low to high on the SDA line.

Page 163

To use I2C, we first transmit a start request using i2c_master_start(). We follow this by
the address and the read/write flag. Since an address is 7 bits and the read/write flag is
one bit, this totals 8 bits and hence we can write a byte:

i2c_master_writeByte((address << 1) | readOrWrite);

Next we can read and check the acknowledgment flag using:

if (i2c_master_checkAck() == true) {
...

}

And from here we can either end or execute the next part of read or write.

When we wish to end, we execute i2c_master_stop().

We can send an address query for each of the possible device addresses and see if we
get an acknowledgment. If we do, then we have an I2C device at that address. This
can be used to create a map of devices.

Here is an example application that does just that:

#include <ets_sys.h>
#include <osapi.h>
#include <os_type.h>
#include <gpio.h>
#include <user_interface.h>
#include <espconn.h>
#include <mem.h>
#include "driver/uart.h"
#include "driver/i2c_master.h"

void user_rf_pre_init(void) {
}

os_timer_t scanTimer;

void scanTimerCB(void *pArg) {
os_printf("--- Examining ---\n");
uint8_t i;
for (i=1; i<127; i++) {

i2c_master_start();
i2c_master_writeByte(i << 1);

if (i2c_master_checkAck()) {
os_printf("Found device at: 0x%2x\n", i);

}
i2c_master_stop();

}
os_printf("Done!\n");

} // End of timerCallback

void init() {
i2c_master_gpio_init();

Page 164

os_timer_setfn(&scanTimer, scanTimerCB, NULL);
os_timer_arm(&scanTimer, 10000, 1);

}

void user_init(void) {
uart_init(BIT_RATE_115200, BIT_RATE_115200);
system_init_done_cb(init);

} // End of user_init

See also:

• I2C Bus
• Sparkfun – Tutorial: I2C
• I2C Master APIs
• wget http://<IP address> --quiet --output-document=-

Working with SPI – Serial Peripheral Interface
SPI is a serial protocol used to communicate between masters and slaves. All slaves
connect to the same bus but only the slave with its SS pin low is allowed to transmit.
SPI is a full duplex protocol. What this means is that while data is being pushed out
from the master to the slave, the slave is simultaneously sending data back to the
master. The MOSI pin contains the serial data from the master to the slave while the
MISO pin contains the data from the slave to the master.

Typically three pins:

● MISO – Master In, Slave Out – Sending data to the master from the slave

● MOSI – Master Out, Slave In – Sending data to the slave from the master

● SCK (SCLK) – Serial Clock – Synchronizes data from the master/slave
relationship

There is also an additional signal:

● SS (CSN (Chip Select NOT), NSS) – Slave Select – Used to enable/disable the
slave so that there can be multiple slaves. SS low means slave is the active
slave.

Since this is a serial protocol and we will receive data in bytes, we need to be cognizant
of whether or not data will arrive LSB first or MSB first. There will be an option to
control this.

For the clock, we will be latching data and we will need to know what edges and
settings are important. There will be a clock mode option to control this. In SPI there
are two attributes called phase and polarity. Phase (CPHA) is whether we are latching

data on high or low and Polarity (CPOL) is whether high or low means that the clock is

idle.

CPOL=0 means clock is default low, CPOL=1 means clock is default high.

Page 165

https://learn.sparkfun.com/tutorials/i2c
http://www.i2c-bus.org/

When CPOL=0, then the following are the values for CPHA

CPHA=0 means data is captured on clock rising edge, CPHA=1 means data is captured on
clock falling edge.

When CPOL=1, then the following are the values for CPHA

CPHA=0 means data is captured on clock falling edge, CPHA=1 means data is captured on
clock rising edge.

 SPI wraps these two flags into four defined and named modes:

Mode Clock Polarity – CPOL Clock Phase – CPHA

SPI_MODE0 0 (Clock default low) 0

SPI_MODE1 0 (Clock default low) 1

SPI_MODE2 1 (Clock default high) 0

SPI_MODE3 1 (Clock default high) 1

Also for the clock, what speed are we will need to know what speed the data is to be
moved. There will be a clock control speed option to control this.

Hardware SPI
The ESP8266 has hardware SPI support that is controlled by setting registers and using
SDK supplied macros. There are certain physical pins that are reserved for the
hardware SPI. These are:

GPIO NodeMCU Name Function

GPIO12 D6 HMISO MISO

GPIO13 D7 HMOSI MOSI

GPIO14 D5 HSCLK CLK

GPIO15 D8 HCS CS

To begin with, we will think about the clock. This is the speed at which the ESP8266
toggles the communication stream with the SPI partner. We can set this to be the same
speed as the processor clock (80MHz) by writing to a peripheral register.

WRITE_PERI_REG(SPI_CLOCK(HSPI), SPI_CLK_EQU_SYSCLK)

This instructs the ESP8266 that the hardware SPI clock speed should be equal to the
system clock speed which is normally 80MHz.

Page 166

If this speed is too fast, we can change the clock speed with a divisor called
SPI_CLKDIV_PRE. This divides the clock speed by a value. If you want to divide by X
then supply a value of X-1.

For example, to divide the clock speed by 10, provide a value of 9.

Now we have a raw clock speed. However, there is more. There is a setting called
SPI_CLKCNT_N that defines how many of these raw clock ticks should constitute one SPI
clock cycle. Remember that an SPI clock cycle starts high, transitions to low and then
returns to high again. The SPI_CLKCNT_N defines how many raw clock cycles
correspond to SPI clock cycle. For example, specifying a value of 9 (desired value is
n+1) means that 10 raw clock cycles will be one SPI clock cycle. Realize that this is a
divisor of the raw clock cycle.

There are other settings that effect clock and these are called SPI_CLKCNT_H and
SPI_CLK_CNT_L. Taken together, these define the number of clock cycles that the clock
is high vs low. This shapes the clock signal. The values here are encoded to mean the
number of raw clock cycles where the SPI clock is high vs low. The difference between
them gives the result. For example, setting SPI_CLKCNT_H=6 and SPI_CLKCNT_L=1 results
in a difference of 5 meaning that 5 raw clock cycles will be high and the remaining clock
cycles (5) will be low.

Function Bits Mask Shift

SPI_CLK_EQU_SYSCLK 31 N/A SPI_CLK_EQU_SYSCLK

SPI_CLKDIV_PRE 30:18 SPI_CLKDIV_PRE SPI_CLKDIV_PRE_S

SPI_CLKCNT_N 17:12 SPI_CLKCNT_N SPI_CLKCNT_N_S

SPI_CLKCNT_H 11:6 SPI_CLKCNT_H SPI_CLKCNT_H_S

SPI_CLKCNT_L 5:0 SPI_CLKCNT_L SPI_CLKCNT_L_S

There are three registers that control data input and output. These are called SPI_USER,
SPI_USER1 and SPI_USER2.

SPI_USER contains the following flags:

• SPI_CS_SETUP – When enabled, the chip select line is pulled low a few cycles
before transmission allowing the partner SPI device to become ready for a
transmission.

• SPI_CS_HOLD – When enabled, the chip select line remains low for a few cycles
after transmission allowing the partner SPI device to continue for a little.

Page 167

Function Bit

SPI_USR_COMMAND 31

SPI_USR_ADDR 30

SPI_USR_DUMMY 29

SPI_USR_MISO 28

SPI_USR_MOSI 27

SPI_USR_MOSI_HIGHPART 25

SPI_USR_MISO_HIGHPART 24

SPI_SIO 16

SPI_FWRITE_QIO 15

SPI_FWRITE_DIO 14

SPI_FWRITE_QUAD 13

SPI_FWRITE_DUAL 12

SPI_WR_BYTE_ORDER 11

SPI_RD_BYTE_ORDER 10

SPI_CK_OUT_EDGE 7

SPI_CK_I_EDGE 6

SPI_CS_SETUP 5

SPI_CS_HOLD 4

SPI_FLASH_MODE 2

SPI_USER1 contains four settings for the number of bits in various SPI settings. These
are:

• SPI_USR_ADDR_BITLEN – How many bits in the SPI address.

• SPI_USR_MOSI_BITLEN – How many bits in the MOSI data.

• SPI_USR_MISO_BITLEN – How many bits in the MISO data.

• SPI_USR_DUMMY_CYCLELEN – How many bits in the dummy cycles.

An additional register called SPI_ADDR contains the address.

Function Bits Mask Shift

SPI_USR_ADDR_BITLEN 31:26 SPI_USR_ADDR_BITLEN SPI_USR_ADDR_BITLEN_S

SPI_USR_MOSI_BITLEN 25:17 SPI_USR_MOSI_BITLEN SPI_USR_MOSI_BITLEN_S

SPI_USR_MISO_BITLEN 16:8 SPI_USR_MISO_BITLEN SPI_USR_MISO_BITLEN_S

SPI_USR_DUMMY_CYCLELEN 7:0 SPI_USR_DUMMY_CYCLELEN SPI_USR_DUMMY_CYCLELEN_S

Page 168

Function Bits Mask Shift

SPI_USR_COMMAND_BITLEN 31:28 SPI_USR_COMMAND_BITLEN SPI_USR_COMMAND_BITLEN_S

SPI_USR_COMMAND_VALUE 15:0 SPI_USR_COMMAND_VALUE SPI_USR_COMMAND_VALUE_S

The details of these registers and macros defining constants can be found in the
spi_register.h file supplied in the drivers include directory.

See also:

● Hardware SPI Clock Registers
● Hardware SPI (HSPI) Command & Data Registers
● Wikipedia – Serial Peripheral Interface Bus

The MetalPhreak/ESP8266_SPI_Driver
Interacting with hardware SPI can be challenging. Fortunately, an open source project
on GitHub has provided an easy to use solution to the problem. The project is known
as MetalPhreak/ESP8266_SPI_Driver which is composed of a C source file and a couple
of header files.

The source exposes the following functions:

• void spi_init(uint8 spi_no)

• void spi_init_gpio(uint8 spi_no, uint8 sysclk_as_spiclk)

• void spi_clock(uint8 spi_no,
 uint16 prediv,
 uint8 cntdiv)

To calculate the effective clock rate, take the CPU frequency (80MHz) and then divide it
by preDiv. This gives a base frequency. Next we divide that by

• void spi_tx_byte_order(uint8 spi_no, uint8 byte_order)

• void spi_rx_byte_order(uint8 spi_no, uint8 byte_order)

• uint32 spi_transaction(uint8 spi_no,
uint8 cmd_bits,
uint16 cmd_data,
uint32 addr_bits,
uint32_dout_bits,
uint8 dout_data,
uint32_din_bits,
uint32 dummy_bits)

In addition, the following macros are also provided:

• spi_busy(spi_no)

Page 169

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://d.av.id.au/blog/hardware-spi-hspi-command-data-registers/
http://d.av.id.au/blog/hardware-spi-clock-registers/

• spi_txd(spi_no, bits, data)

• spi_tx8(spi_no, data)

• spi_tx16(spi_no, data)

• spi_tx32(spi_no, data)

• spi_rxd(spi_no, bits)

• spi_rx8(spi_no)

• spi_rx16(spi_no)

• spi_rx32(spi_no)

In the previous functions, SPI and HSPI are the allowable values for spi_no.

See also:

● GitHub: MetalPhreak/ESP8266_SPI_Driver

Working with serial
There are two UARTs in the system known as UART0 and UART1. UART0 has its own
dedicated TX and RX pins while UART1 is multiplexed with GPIO2. UART1 is output
only and hence only has a TX line.

The serial interface to the ESP8266 can be initialized with a call to the function
uart_init().

For example

uart_init(BIT_RATE_115200, BIT_RATE_115200);

To write a string to the serial port, we can then use os_printf(). This has the same
format as a printf but writes to the serial port.

In order to work with UART, you must include the uart.c, uart.h and uart_register.h
files from examples/driver_lib. In your application, you must then include
"driver/uart.h".

To transmit data using UART0, we have the function called uart0_tx_buffer() which
accepts a pointer to data and a length and transmits it.

Within the SDK there is a transmission buffer. Because UART transmission is typically
a slow operation, applications that wish to transmit data have their data stored in the TX
buffer which is then drained by transmission over time. Data written to the UART is
assured to be written in the order in which it was supplied. Should the TX buffer
become full, no new data can be accepted.

Page 170

https://github.com/MetalPhreak/ESP8266_SPI_Driver

Similarly, data received by the ESP8266 over UART is placed in a receive buffer. The
application running on the ESP8266 has to receive the data in a timely fashion. If the
RX buffer becomes full there is no place to put new data and that new data will be
discarded. In UART terms, both the TX and RX buffers are termed "FIFO" which
means first-in-first-out. The buffers are 128 bytes each (128 bytes for TX and a second
128 byte buffer for RX).

To find out how many bytes are on the various queues, we have to go pretty low level.
For example, the number of bytes on the TX queue is given by:

(READ_PERI_REG(UART_STATUS(uart_no))>>UART_TXFIFO_CNT_S) & UART_TXFIFO_CNT;

while the number of bytes on the RX queue is given by:

(READ_PERI_REG(UART_STATUS(UART0))>>UART_RXFIFO_CNT_S) & UART_RXFIFO_CNT;

See also:

• Connecting to the ESP8266
• USB to UART converters
• uart_init
• uart0_tx_buffer
• uart0_rx_intr_handler
• os_printf

ESP8266 Task handling
Imagine we wish to have a task performed for us asynchronously. What we might want
to do is post that we wish this to happen and then go on with our business. When we
are done and have relinquished control back to the OS, we assume that the task will
eventually start executing. This is the function provided by the task functions of the
ESP8266. There are two functions of interest to us. The first is called
system_os_task() which sets up a task processor.

When we wish to post that a task is eligible to start, we can use the second function
called system_os_post() which posts a message.

The task function that we registered will then be "invoked" at some point after the post
request and will be given the parameters supplied in the post. The priority identifies the
relative priority of two posts that have been issued. The one with the highest priority will
execute first.

It is important to note that only three priorities are allowed which are 0, 1 and 2 with 0
having the lowest priority. It is also important to note that there can only be one handler
for each task registration by priority. So if we execute system_os_task() twice using the
same priority in both cases, only the last one is remembered and will be executed when
a task of that priority is posted.

Page 171

With this background, what is the purpose of this function set? Why would we care
about it?

Note: The Arduino library for ESP uses the priority 0 task set.

Here is a sample of a simple task handler.

void taskHandler(os_event_t *event) {
switch(event->sig) {
case 1:

break;
case 2:

break;
}

}

os_event_t *taskQueue;
taskQueue = (os_event_t *)malloc(sizeof(os_event_t) * TASK_QUEUE_LEN);
system_os_task(taskHandler, USER_TASK_PRIO_1 taskQueue, TASK_QUEUE_LEN);

system_os_post(USER_TASK_PRIO_1, 1, (os_param_t)"Hello");

See also:

• system_os_task
• system_os_post

Timers and time
Within our code, we may wish to delay for a period of time. We can use the
os_delay_us() function to suspend processing for a given period measured in
microseconds. There are 1000 microseconds in a millisecond and a 1000 milliseconds
in a second.

We can configure a timer to be called on a periodic basis with a callback granularity of
milliseconds. A data structure called os_timer_t holds the state of the timer.

We can define the user function to be called when the timer fires using the
os_timer_setfn() function. Note that we can only set the callback function when the
timer is disarmed.

When ready, we can arm the timer so that it starts ticking and fires when ready. We do
this using the os_timer_arm() function.

The repeat flag indicates whether the timer should restart after it has fired.

We can suspend or cancel the firing of the timer using os_timer_disarm().

Here is an example:

os_timer_t myTimer;

void timerCallback(void *pArg) {

Page 172

os_printf("Tick!");
} // End of timerCallback

void user_init(void) {
uart_init(BIT_RATE_115200, BIT_RATE_115200);
os_timer_setfn(&myTimer, timerCallback, NULL);
os_timer_arm(&myTimer, 1000, 1);

} // End of user_init

Another aspect of working with time is time calculations and measurement. The
function system_get_time() returns a 32 bit unsigned integer (unit32) value which is the
microseconds since the device booted. This value will roll over after 71 minutes.

What if we need a granularity of time smaller than a microsecond? Hopefully you won't
need this often … however some solutions such as working with the WS2812 LEDs do
in fact require ultra fine precision.

One possible solution is to drop down to assembly language programming. There is a
special register managed by the ESP8266 which is called "ccount" which measures
cycles of operation. The value of this is incremented each time an operational cycle
completes.

The value of this register can be retrieved with the following C code:

static inline uint32_t getCycleCount() {
 uint32_t ccount;
 __asm__ __volatile__("rsr %0,ccount":"=a" (ccount));
 return ccount;
}

This fragment uses the in-line assembler to transform an assembly language statement
into its corresponding operational instruction.

See also:

• system_get_time
• os_timer_arm
• os_timer_disarm
• os_timer_setfn

ESP32 – Working with Non Volatile Storage
Non volatile storage is memory that can be written to such that after a power off or
restart, the same data can be read from it again. It is preserved over a restart. The
storage is partitioned into named areas. For a given named area, we can then write
name/value pairs to the storage and also read name/value pairs. There are
getter/setter functions for most data types including signed and unsigned integers,
strings and blobs of data.

Page 173

A named area is opened for access with a call to nvs_open(). The name of the area is
passed in as a parameter. We are returned a logical "handle" that we can subsequently
use to refer to this storage area. Once we have a handle, we can get/set items of
named data. The data items are referenced by a key name … effectively turning the
storage area into a hash map. If we change data by performing a set function, this does
not automatically cause the data to be written to the nonvolatile storage. Instead, the
storage is updated when we call nvs_commit(). It is up to the internal implementation
as to when the actual update is performed and it could happen prior to nvs_commit().
The contract is that when we return from nvs_commit() then we are assured that all
updates have been processed. When we have done all our sets and gets, we should
call nvs_close() to declare that we are not going to work with storage any more at this
time so that the run-time can clean up any resources it may have opened.

Working with memory
When working in C, you have to think in terms of computer memory. The amount of
available RAM is likely to be less than 45KBytes.

We can allocate memory using os_malloc() or os_zalloc(). The first function allocates
and returns memory and the second does exactly the same but zeros the memory
before returning. When your logic no longer needs the memory, it can return it back to
the heap with os_free(). To determine how much heap size is available, we can call
system_get_free_heap_size(). Once we have the memory pointer, we can start to
manipulate it through a series of memory commands. The os_memset() command will
set a block of memory to a specific value. The os_memcpy() will copy a block of memory
to a different block. The os_bzero() function will set the values of a block of memory to
zero.

Memory on the ESP8266 is made up of a number of components. We have:

• data

• rodata

• bss

• heap

The values of these can be found through the system_print_meminfo() function.

When the ESP8266 needs to read an instruction from memory in order to execute it,
that instruction can come from one of two places. The instruction can be in flash
memory (also called irom) or it can be in RAM (also called iram). It takes less time for
the processor to retrieve the instruction from RAM than it does from flash. It is believed
that an instruction fetch from flash takes four times longer than the same instruction

Page 174

fetched from RAM. However, on the ESP8266 there is far less RAM than there is flash.
What this means is that you are far more likely to run out of RAM way before you run
out of flash. When writing normal applications, we shouldn't fixate on having
instructions in RAM rather than flash for the performance benefit. The execution
speeds of the ESP8266 are so fast that if the cost of retrieving an instruction from RAM
is blindingly fast then retrieving an instruction from slower flash is still blindingly fast.

There are however certain classes of instructions that we might wish to place in RAM
rather than flash. Examples of these are interrupt handlers where the time spent in
these should always be as short as possible and also function that write to flash.

When we define C functions, we can add an attribute by the name of
ICACHE_FLASH_ATTR. What this does is place this function in the flash memory address
space as opposed to RAM. Specifically, flagging a function with ICACHE_FLASH_ATTR
tags it as being in the ".irom0.text" section of code.

Note: From a raw technical perspective, ICACHE_FLASH_ATTR is a #define that maps to:

__attribute__((section(".irom0.text")))

One of the areas we have not yet discussed is how memory is populated and used
when an ESP8266 boots. There are two files commonly uploaded into flash. The first is
at offset 0x00000 and this contains the data that will be loaded into RAM by the ROM
based boot-loader. This data contains a series of sections and addresses in RAM of
where the data will be loaded. The second binary file is commonly loaded into flash at
0x40000. It contains the binary data of a section called .irom0.text which contains
code. The RAM loaded code must match where this flash stored data is addressed.

For those interested in low level details, the format of the memory written to the flash
files has been decoded. It is believed that the low memory looks like:

struct rom_header {
uint8 magic;
uint8 sect_count;
uint8 flags1;
uint8 flags2;
uint32 entry_addr;

};

The magic property is a constant of 0xe9. The sect_count contains the number of
sections to load into ram. This will not include the irom.text section. The flags1 and
flags2 are used to indicate the flash size, clock rate and IO mode. Finally, entry_addr
is the entry point to start executing user supplied code.

Immediately following the header, are section entries (there should be sect_count of
them) where each entry is:

Page 175

struct sect_header {
uint32 address;
uint32 length;

}

The addresses should be within the .iram address space starting at 0x40100000. After
each of the headers is a check-sum value. A check-sum is calculated from each of the
sections and validated that it matches what is supposed to be present.

The whole of flash is also mapped to address space 0x40200000.

The second file contains the irom.text section data. By default, the address space for
this section is 0x40240000 which means that it should be written to flash at 0x40000.

An excellent map of ESP8266 memory is being maintained on the ESP8266 Wiki.

The core essence of it is here:

Address Size Notes

0x0000 0000 < Can't be read.

0x2000 0000 < Unmapped

0x3FF0 0000 < Memory mapped I/O.

0x3FF1 0000 < Unmapped.

0x3FFE 8000 < 80K – 81920 (0x14000) User data RAM (dram)

0x3FFF C000 < 16K – 16384 (0x4000) ETS system data RAM.

0x4000 0000 < Internal ROM

0x4010 0000 < 32K – 32768 (0x8000) Instruction RAM
(iram/sram)

0x4010 8000 < Unmapped or unknown

0x4020 0000 < Max 1024K (1M) – 1048576
(0x100000)

SPI Flash

0x4030 0000 < Unmapped or unknown

Now comes a discussion that took me a long, long time to comprehend. It is the
relationship between the flash memory and the address space of the ESP8266. If we
examine the previous table, we seem to see that the Flash memory is mapped into the
ESP8266 address space at address 0x4020 0000. That is key and vital to understand.
If we read from this address onwards, we are actually reading from flash memory.

Let us think about the ESP-12 which has 512K of flash memory. In hex, this is 0x8
0000 bytes. This means an address range of 0x4020 0000 to 0x4027 FFFF. Now let us
consider the ESP flashing tools such as “esptool”. This also accepts an address into
which to load flash … but how does that address relate to run-time address space of the

Page 176

http://www.esp8266.com/wiki/doku.php?id=esp8266_memory_map

ESP8266? The answer is that if we write to address 0x0 0000 of flash, at run-time it will
appear at 0x4020 0000. So in effect what we have is the following:

Now we answer one more puzzle. When we link together the object files and produce
a binary image … part of the role of the linker is to come up with the final address layout
where the executable will finally reside. In practice, when we run the linker, we supply
a linker control file called "eagle.app.v6.ld". This is supplied by Espressif. If we look
in the default file, we find the following at the start of the file:

MEMORY
{
 dport0_0_seg : org = 0x3FF00000, len = 0x10
 dram0_0_seg : org = 0x3FFE8000, len = 0x14000
 iram1_0_seg : org = 0x40100000, len = 0x8000
 irom0_0_seg : org = 0x40240000, len = 0x32000
}

Now … look at this closely … because it took me forever to understand what I am about
to tell you. Look at the address at where the irom0 segment begins. It starts at 0x4024
0000 … this is 256K into the 512K address range! Putting this another way, our
executables can't use the whole address with these default settings. Why did Espressif
set this? The answer is believed to be because they want to provide Over The Air
(OTA) upgrade capability and wish to allow you to have a running copy of your app and
an in-flight new copy be loaded. This means that effectively, 256K for the current
version and 256K for the new version being loaded. If we tried to use the whole
address space and during a refresh something went wrong, we have nothing to fall back
to.

Page 177

If you, like me, wanted to use the whole address space, the answer is simple. Change
the corresponding entry in the "eagle.app.v6.ld" file.

One last wrinkle. It is believed that the last 16K of flash should be reserved for
Espressif SDK storage for things like the last used SSID and password. Don't assume
that you can use that range.

By default, the following items in an ELF file go to the 0x0 0000 flash location

• .text

• .data

• .rodata

• .iram0.text

The following sections go to the 0x4 0000 flash location

• .text

See also:

• os_memset
• os_memcpy
• os_memcmp
• os_malloc
• os_zalloc
• os_free
• system_get_free_heap_size
• system_print_meminfo
• The ESP8266 Boot Process
• esptool.py
• esptool-ck
• gen_appbin.py

Working with flash memory
Flash memory provides a non-volatile repository of information that survives a power
cycle of the device.

Data contained within flash is stored in units of sectors which are 4096 bytes in size. To
write data we can call spi_flash_write. To read data we call spi_flash_read.

Since writing to flash is performed in units of 4096 bytes, we can not change a single
byte by just over-writing it, instead we must retrieve the whole sector, erase the sector
and then write back the sector with the changed content. This can take some time to
complete and because of this, we may find that a failure is more likely to occur (eg. a
loss of power). If a failure occurs after we have erased a sector or during the re-write of
the sector, it should immediately become apparent that we will result in an overall
corruption of data.

Page 178

http://richard.burtons.org/2015/05/17/esp8266-boot-process/

Data reads and writes have to be 4 bytes aligned within flash.

The ESP8266 has to be instructed about the size of the flash memory available to it.
Attempting to use flash memory addresses that differ from the expected size of flash
memory available can result in unexpected results.

When using esptool.py, the --flash_size flag can be supplied. For esptool-ck, the
corresponding flag is -bz.

See also:

• spi_flash_get_id
• spi_flash_erase_sector

• spi_flash_read
• spi_flash_set_read_func
• system_param_save_with_protect
• Cesanta: ESP8266, flash and alignment

Page 179

https://blog.cesanta.com/esp8266_using_flash

• system_param_load

Pulse Width Modulation – PWM
The idea behind pulse width modulation is that we can think of regular pulses of output
signals as encoding information in how long the signal is kept high. Let us imagine that
we have a period of 1HZ (one thing per second). Now let us assume that we raise the
output voltage to a level of 1 for ½ of a second at the start of the period. This would
give us a square wave which starts high, lasts for 500 milliseconds and then drops low
for the next 500 milliseconds. This repeats on into the future. The duration that the
pulse is high relative to the period allows us to encode an analog value onto digital
signals. If the pulse is 100% high for the period then the encoded value would be 1.0.
If the pulse is 100% low for the period, then the encoded value would be 0.0. If the
pulse is on for "n" milliseconds (where n is less than 1000), then the encoded value
would be n/1000.

Typically, the length of a period is not a second but much, much smaller allowing us to
output many differing values very quickly. The ratio of the on signal to the period is
called the "duty cycle". This encoding technique is called "Pulse Width Modulation" or
"PWM".

There are a variety of purposes for PWM. Some are output data encoders. One
commonly seen purpose is to control the brightness of an LED. If we apply maximum
voltage to an LED, it is maximally bright. If we apply ½ the voltage, it is about ½ the
brightness. By applying a fast period PWM signal to the input of an LED, the duty cycle
becomes the brightness of the LED. The way this works is that either full voltage or no
voltage is applied to the LED but because the period is so short, the "average" voltage
over time follows the duty cycle and even though the LED is flickering on or off, it is so
fast that our eyes can't detect it and all we see is the apparent brightness change.

For the ESP8266, the period of the PWM can range from 1 millisecond to 10
milliseconds. This is a frequency of 1KHz to 100Hz. The resolution of the duty cycle is
down to 45 nanoseconds which is 14 bits of resolution data. The device provides
support for up to 8 PWM channels where each channel can be associated with its own
pin and duty cycle. The period is the same for all PWM channels.

To start using the ESP8266 PWM support, a call to pwm_init() is needed which sets up
which pins are to be used for PWM and for which channels. A call to this function also
sets up an initial period and duty cycle. A call to pwm_start() can then be made to start
the PWM outputs. The period of PWM as a whole and duty cycles for each channel
can be changed using the pwm_set_period() and pwm_set_duty() functions.

The ESP8266 PWM functions utilize the hardware timer. As such you can have PWM
support or utilize the hardware timer for your uses … but not both.

Page 180

To utilize the ESP8266 SDK PWM functions, you must link your application with
libpwm.a.

See also:

• Wikipedia: Pulse-width modulation
• Espressif Sample
• pwm_init
• pwm_start

pwm_set_duty
• pwm_get_duty
• pwm_set_period
• pwm_get_period

Analog to digital conversion
Analog to digital conversion is the ability to read a voltage level from a pin between 0
and some maximum value and convert that analog voltage into a digital representation.
Varying the voltage applied to the pin will change the value read. The ESP8266 has an
analog to digital converter built into it with a resolution of 1024 distinct values. What
that means is that 0 volts will produce a digital value of 0 while the maximum voltage will
produce a digital value of 1023 and voltage ranges between these will produce a
correspondingly scaled digital value.

To read the digital value of the analog voltage, the function called system_adc_read()
should be called. The pin on the physical ESP8266 from which the voltage is read is
called TOUT and serves no other purpose.

The input range on the pin is from 0V to 1V. This implies that the input voltage to the
ADC can not be the maximum voltage used to power the ESP8266 itself (3.3V). So we
will need to use a voltage divider circuit.

The formula to map these out is:

Vout=
R2

R1+R2
⋅Vin

Page 181

http://bbs.espressif.com/viewtopic.php?f=31&t=1378&p=4568
https://en.wikipedia.org/wiki/Pulse-width_modulation

Since we know Vout is going to 1V and Vin is 3V and we choose R2 to be 10K, we find:

R1=
R2⋅Vin
Vout

−R2

and for our values:

R1=
10000∗3.3

1.0
−10000=23000

A common 22K resistor will work well.

Here is an example. What this example does is print the value read from the ADC every
second.

os_timer_t myTimer;

void timerCallback(void *pArg) {
uint16 adcValue = system_adc_read();
os_printf("adc = %d\n", adcValue);

} // End of timerCallback

void user_init(void) {
uart_init(BIT_RATE_115200, BIT_RATE_115200);
os_timer_setfn(&myTimer, timerCallback, NULL);
os_timer_arm(&myTimer, 1000, 1);

} // End of user_init

If we build out on a breadboard a circuit which includes a light dependent resistor such
as the following:

Page 182

Then when we change the amount of light falling on the resistor, we can see the values
change as data is written in the output log. This can be used to trigger an action (for
example) when it becomes dark.

Open question: What is the sample rate of the ADC?

See also:

• system_adc_read
• Wikipedia: Voltage divider

Sleep modes
If the ESP8266 device is constantly on, then it is constantly consuming current. If the
power source is unlimited, then this need not necessarily be an issue however when
running on batteries or other finite supply, we may need to minimize consumption. One
way to achieve this is to suspend the operation of the device when not in use. When
the device is suspended, the notion is that consumption will be reduced. There are
three defined sleep modes. These are called modem-sleep, light-sleep, deep-sleep.

Page 183

https://en.wikipedia.org/wiki/Voltage_divider

By looking at the following table we can get a sense of the abilities in each of these
three modes:

Function Modem Light Deep

WiFi off off off

System Clock on off off

Real Time Clock on on on

CPU on pending off

Current consumption 15mA 0.5mA 20µA

The modem-sleep can only be used when the ESP8266 is in station mode connected to
an access point. The application of this mode is when the ESP8266 needs to still
perform work but minimizes the amount of wireless transmissions.

The light-sleep mode is the same as modem-sleep but in this case the clocks will be
suspended.

In deep-sleep mode, the device is really asleep. Neither CPU nor WiFi activities take
place. The device is to all intents and purposes off … with one exception … it can wake
up at a specified regular interval.

To enter deep sleep mode, we can call system_deep_sleep(). This can be supplied with
a suspension time. The device will go to sleep and after the interval has elapsed, the
device will wake up again. In addition to having a timer, we can also awake from a deep
sleep by toggling the value of a signal on a pin.

We can control which mode the device is in by calling wifi_set_sleep_type().

Watchdog timer
The ESP8266 is a single threaded processor. This means it can only do one thing at a
time as there are no parallel threads that can be executed concurrently with each other.
An implication of this is that when the OS gives control to your application, it doesn't get
control back until such time as you explicitly relinquish it. However, this can cause
problems. The ESP8266 is primarily a WiFi and TCP/IP device that expects to be able
to receive and transmit data as well as respond to asynchronous events within a timely
manner. As an example, if your ESP8266 device is connected to an access point and
the access point wants to validate that you are still connected, it may transmit a packet
to you and expect a response. You have no control over when that will happen. If your
own application program has control over the execution at the time when the request
arrives, that request will not be responded to until after you return control back to the
OS. Meanwhile, the access point may be expecting a response within some

Page 184

predetermined time period and, if does not receive a reply within that interval, may
assume that you have disconnected. To prevent such circumstances your application
code has to return control back to the OS in a timely manner. It is recommended that
your code return control within 50 milliseconds of gaining control. If you take longer,
you run the risk of requests to your device timing out.

If your own code fails to return control back to the OS, the OS must assume that things
are going wrong. As such, it has a timer that we call the "watchdog". When control is
given to your own code, the watchdog timer starts ticking. If you have not returned
control back to the OS by the time the watchdog timer reaches zero, it takes matters
into its own hands. Explicitly what it does is reboot the device. This may sound like a
pretty drastic action but the thinking is that it is better to do this and hope that whatever
was blocked is now unblocked than just sit there "dead".

Reports claim that the watchdog timer may be about 1 second (1000 milliseconds).
However, in my tests, I find that the timer fires at about 3.2 seconds (3200 msecs).

A function called system_soft_wdt_stop() stops the watchdog timer … or at least one of
them. There appears to be two timers. One is in software, the other in hardware. This
function stops the software timer. It can be restarted with system_soft_wdt_restart()
… however, a second timer called the hardware watchdog timer will fire after about 8
seconds and doesn't appear able to be trapped. A new call introduced in SDK 1.3 is
called system_soft_wdt_feed(). Unfortunately the documentation on this is exceedingly
poor. The best reports we have so far on what it does for is that when we call it, the
watchdog time is reset to its starting point and starts ticking down again. I'm not quite
sure of the value of this given that we already have API to stop and then restart the
timer. Hopefully in the future we can gain additional knowledge to clear up any
mysteries that may be lurking within.

See also:

• system_soft_wdt_stop
• system_soft_wdt_restart
• system_soft_wdt_feed

Yielding control
We have just been describing the notion of having to return control back to the OS in
order for it to perform its house keeping duties. The way we do this is simply to return
from the callback that the OS invoked us upon. If we think about how an ESP8266
program works, we will see that in order for us to relinquish control back to the OS, the
OS must have called us in the first place. Therefore it makes sense for us to return
control at a later point. However, if we return control, we (obviously) loose all the state
(variables) that were in existence when we returned.

Page 185

Now we get to introduce a concept called "yielding". The idea behind yielding is that
instead of our application returning control back to the OS, what we can arrange to do is
return to the OS while at the same time maintaining the context of where we are within
the current execution. When the OS completes a round of housekeeping, what it can
then do is "return" back to where ever we were when we requested a yield to occur.

This is tricky stuff to implement but fortunately Ivan Gorkhotov has achieved this task for
us and we can leverage what he already built.

To use this:

1. Include cont.h

2. Create a global of "cont_t g_cont __attribute__ ((aligned (16)));"

3. In user_init called "cont_init(&g_cont);"

4. Register a system_os_task() processor.

When we wish to schedule some code for execution, post a task.

void esp_schedule() {
 system_os_post(TASK_PRIORITY, 0, 0);
}

static void taskHandler(os_event_t *events) {
 cont_run(&g_cont, someFunction);
 if(cont_check(&g_cont) != 0) {
 os_printf("Overflow detected\r\n");
 abort();
 }
}

Security
The ESP8266 has the ability to store the password used to connect to the access point
in memory. This means that if one were to physically compromise the device (i.e. steal
it) then they could, in principle, dump the flash memory and retrieve your password.
You could choose not to cache the password in the clear in flash but instead have your
applications "decode" an encoded version that is saved in the flash memory … this
would prevent an obvious retrieval through a simple memory grab. The encoding
scheme could be a simple XOR against a magic number (either hard-coded or your own
MAC address).

Mapping from Arduino
Without argument, the Arduino has become the most successful microprocessor
programming environment to-date. There are tons and tons of existing sketches in

Page 186

existence and let us not forget about the wealth of libraries. Tools and utilities exist to
compile and run Arduino sketches on ESP8266s. What if instead we wanted to port
those Arduino sketches to native ESP8266 code? Can we find mappings between the
Arduino APIs and the corresponding ESP8266 APIs?

Arduino ESP8266

digitalWrite(pin, value) GPIO_OUTPUT_SET(pin, value)

digitalRead(pin) GPIO_INPUT_GET(pin)

delay(ms) os_delay_us(ms * 1000)
Note: ms <= 65535

delayMicroseconds(us) os_delay_us(us)

millis() system_get_time() / 1000

From a functional perspective, here are some comparisons between an Arduino and an
ESP8266:

ESP8266 Arduino (Uno)

GPIOs 17 (Fewer typically exposed) 14 (20 including analog)

Analog input 1 6

PWM channels 8 6

Clock speed 80MHz 16MHz

Processor Tensilica Atmel

SRAM 45KBytes 2KBytes

Flash 512Kb or more (separate) 32KB (on chip)

Operating Voltage 3.3V 5V

Max current per I/O 12mA 40mA

UART (hardware) 1 ½ 1

Networking Built-in Separate

Documentation Poor Excellent

Maturity Early Mature

Note: Because the Arduino has no native networking, no further comparisons of network
capability were included above. Do remember that, at this time, when one is using an
ESP8266, the chances are high it is because you need network access.

Spiffs File System
The SPI Flash File System (SPIFFS) is a file system mechanism intended for
embedded devices. An implementation is supplied with the FreeRTOS ESP8266 SDK.

Page 187

What is the page size of ESP8266 flash? What is the block size of ESP8266 flash?

When a SPIFFS API call is made, a zero or positive response indicates success while a
value < 0 indicates an error. The nature of the error can be retrieved through the
SPIFFS_errno() call.

The SPIFFS implementation does not directly access the flash memory. Instead, a
functional area called a hardware abstraction layer ("hal") provides this service. A
SPIFFS integration requires that three functions be created that have the following
signatures:

s32_t (*spiffs_read)(u32_t addr, u32_t size, u8_t *dst)
s32_t (*spiffs_write)(u32_t addr, u32_t size, u8_t *src)
s32_t (*spiffs_erase)(u32_t addr, u32_t size)

If they succeed, the return code should be SPIFFS_OK (0). On an ESP8266, these will
map to the SPI flash APIs.

The SPIFFS file system could be hierarchical in nature such that it contains both
directories and files but it seems that in reality it is not. There is only one directory
called the root. The root directory is "/". To determine the members of a directory, we
can open a directory for reading with the SPIFFS_opendir() API and, when we are
finished, close the reading operation with a SPIFFS_closedir() API call. We can walk
through the directory entries with calls to SPIFFS_readdir().

For example:

spiffs_DIR spiffsDir;
SPIFFS_opendir(&fs, "/", &spiffsDir);
struct spiffs_dirent spiffsDirEnt;
while(SPIFFS_readdir(&spiffsDir, &spiffsDirEnt) != 0) {
 printf("Got a directory entry: %s\n", spiffsDirEnt.name);
}
SPIFFS_closedir(&spiffsDir);

To create a file, we can use the SPIFFS_open() API by supplying a SPIFFS_CREAT
flag.

See also:

• Github: pellepl/spiffs

Partner TCP/IP APIs
If the ESP8266 can act as one end of a TCP/IP connection, something else has to act
as the other (of course, there is nothing to prevent two ESP8266s from communicating
between themselves). Here we look into some technologies that allow partners to
interact with the ESP8266 over the TCP/IP protocol.

Page 188

https://github.com/pellepl/spiffs

For the TCP/IP protocol, the programming API originally developed for the Unix platform
and written in C was called "sockets". The notion of a socket is that it logically
represents an endpoint of a network connection. A sender of data sends data through
the socket and the receiver of data receives data through the socket. The
implementation of the "socket" itself is provided by the libraries but the logical notion of
the socket remains. You will find yourself working with an "instance" of a socket and
you should think of it as an opaque data type that refers to a communication link.

Sockets remains the primary API and is present in the majority of languages. Here we
discuss some of the variants for some of the more common languages.

TCP/IP Sockets
The sockets API is a programming interface for working with TCP/IP networking. It is
probably the most familiar API for network programming. TCP/IP network flows come in
two flavors … connection oriented over TCP and datagram oriented over UDP. The
sockets API provides distinct patterns of calls for both styles.

For TCP, a server is built by:

1. Creating a TCP socket

2. Associating a local port with the socket

3. Setting the socket to listen mode

4. Accepting a new connection from a client

5. Receive and send data

6. Close the client/server connection

7. Going back to step 4

For a TCP client, we build by:

1. Creating a TCP socket

2. Connecting to the TCP server

3. Sending data/receiving data

4. Close the connection

Now let us break these up into code fragments that we can analyze in more depth. The
header definitions for the sockets API can be found in <lwip/sockets.h>.

 For both the client and the server ends, the task of creating a socket is the same. It is
an API call to the socket() function.

Page 189

int sock = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)

The return from socket() is an integer handle that is used to refer to the socket.
Sockets have lots of state associated with them however that state is internal to the
TCP/IP and sockets implementation and need not be exposed to the network
programmer. As such, there is no need to expose that data to the programmer. We can
think of calling socket() as asking the run-time to create and initialize all the data
necessary for a network communication. That data is owned by the run-time and we
are passed a "reference number" or handle that acts as a proxy to the data. When ever
we wish to subsequently perform work on that network connection, we pass back in that
handle that was previously issued to us and we can correlate back to the connection.
This isolates and insulates the programmer for the guts of the implementation of TCP/IP
and leaves us with a useful abstraction.

When we are creating a server side socket, we want it to listen for incoming connection
requests. To do this, we need to tell the socket which TCP/IP port number it should be
listening upon. On a given device, only one application at a time can be using any
given port number. If we want to associate a port number with an application, such as
our server application in this case, we perform a task called "binding" which binds (or
assigns) the port number to the socket which in turn is owned by the application.

struct sockaddr_in serverAddress;
serverAddress.sin_family = AF_INET;
serverAddress.sin_addr.s_addr = htonl(INADDR_ANY);
serverAddress.sin_port = htons(portNumber);
bind(sock, (struct sockaddr *)&serverAddress, sizeof(serverAddress));

With the socket now associated with a local port number, we can request that the run-
time start listening for incoming connections. We do this by calling the listen() API.
Before calling listen(), connections from clients would have been rejected with an
indication to the client that there was nothing at the corresponding target address.
Once we call listen(), the server will start accepting incoming client connections. The
API looks like:

listen(socket, backlog)

The backlog is the number of connection requests that the run-time will listen for and
accept before they are handed off to the application for handling. The way to think
about this is imagine that you are the application and you can only do one thing at a
time. For example, you can only be talking to one person at a time on the phone. Now
imagine you have a secretary who is handling your incoming calls. When a call arrives
and you are not busy, the secretary hands off the call to you. Now imagine that you are
busy. At that time, the secretary answers the phone and asks the caller to wait. When

Page 190

you free up, she hands you the waiting call. Now let us assume that you are still busy
when yet another client calls. She also tells this caller to wait. We are starting to build a
queue of callers. And this is where the backlog concept comes into play. The backlog
instructs the run-time how many calls can be received and asked to wait. If more calls
arrive than our backlog will allow, the run-time rejects the call immediately. Not only
does this prevent run-away resource consumption at the server, it also can be used as
an indication to the caller that it may be better served trying elsewhere.

Now from a server perspective, we are about ready to do some work. A server
application can now block waiting for incoming client connections. The thinking is that a
server application's purpose in life is to handle client requests and when it doesn't have
an active client request, there isn't anything for it to do but wait for a request to arrive.
While that is certainly one model, it isn't necessarily the only model or even the best
model (in all cases). Normally we like our processors to be "utilized". Utilized means
that while it has productive work it can do, then it should do it. If the only thing our
program can do is service client calls, then the original model makes sense. However,
there are certain programs that if they don't have a client request to immediately
service, might spend time doing something else that is useful. We will come back to
that notion later on. For now, we will look at the accept() function call. When accept()
is called, one of two things will happen. If there is no client connection immediately
waiting for us, then we will block until such time in the future when a client connection
does arrive. At that time we will wake up and be handed the connection to the client. If
on the other hand we called accept() and there was already a client connection waiting
for us, we will immediately be handed that connection and we carry on. In both cases,
we call accept() and are returned a connection to a client. The distinction between the
cases is whether or not we have to wait for a connection to arrive.

The API call looks like:

struct sockaddr_in clientAddress;
socklen_t clientAddressLength = sizeof(clientAddress);
int clientSock = accept(sock, (struct sockaddr *)&clientAddress,
&clientAddressLength);

The return from accept() is a new socket that represents the connection between the
requesting client and the server. It is vital to realize that this is distinct from the server
socket we created earlier which we bound to our server listening port. That socket is
still alive and well and exists to continue to service further client connections. The
newly returned socket is the connection for the conversation that was initiated by this
single client. Like all TCP connections, the conversation is symmetric and bi-directional.
This means that there is now no longer the notion of a client and server … both parties
can send and receive as they would like at any time.

Page 191

See also:

• Wikipedia – Berkeley Sockets

• Beej's Guide to Network Programming

Handling errors
Most of the sockets APIs return an int return code. If this code is < 0 then an error has
occurred.

The nature of the error can be found using the global int called "errno". However, in a
multitasking environment, working with globals is not recommended. In the sockets
area, we can ask a socket for the last error it encountered using the following code
fragment:

int espx_last_socket_errno(int socket) {
 int ret = 0;
 u32_t optlen = sizeof(ret);
 getsockopt(socket, SOL_SOCKET, SO_ERROR, &ret, &optlen);
 return ret;
}

The meanings of the errors can be compared against constants. Here is a table of
constants used in the current FreeRTOS implementation:

Symbol Value Description

EPERM 1 Operation not permitted

ENOENT 2 No such file or directory

ESRCH 3 No such process

EINTR 4 Interrupted system call

EIO 5 I/O error

ENXIO 6 No such device or address

E2BIG 7 Arg list too long

ENOEXEC 8 Exec format error

EBADF 9 Bad file number

ECHILD 10 No child processes

EAGAIN 11 Try again

ENOMEM 12 Out of memory

EACCES 13 Permission denied

EFAULT 14 Bad address

ENOTBLK 15 Block device required

EBUSY 16 Device or resource busy

EEXIST 17 File exists

EXDEV 18 Cross-device link

Page 192

http://beej.us/guide/bgnet/
https://en.wikipedia.org/wiki/Berkeley_sockets

ENODEV 19 No such device

ENOTDIR 20 Not a directory

EISDIR 21 Is a directory

EINVAL 22 Invalid argument

ENFILE 23 File table overflow

EMFILE 24 Too many open files

ENOTTY 25 Not a typewriter

ETXTBSY 26 Text file busy

EFBIG 27 File too large

ENOSPC 28 No space left on device

ESPIPE 29 Illegal seek

EROFS 30 Read-only file system

EMLINK 31 Too many links

EPIPE 32 Broken pipe

EDOM 33 Math argument out of domain of func

ERANGE 34 Math result not representable

EDEADLK 35 Resource deadlock would occur

ENAMETOOLONG 36 File name too long

ENOLCK 37 No record locks available

ENOSYS 38 Function not implemented

ENOTEMPTY 39 Directory not empty

ELOOP 40 Too many symbolic links encountered

EWOULDBLOCK EAGAIN 41 Operation would block

ENOMSG 42 No message of desired type

EIDRM 43 Identifier removed

ECHRNG 44 Channel number out of range

EL2NSYNC 45 Level 2 not synchronized

EL3HLT 46 Level 3 halted

EL3RST 47 Level 3 reset

ELNRNG 48 Link number out of range

EUNATCH 49 Protocol driver not attached

ENOCSI 50 No CSI structure available

EL2HLT 51 Level 2 halted

EBADE 52 Invalid exchange

EBADR 53 Invalid request descriptor

EXFULL 54 Exchange full

ENOANO 55 No anode

Page 193

EBADRQC 56 Invalid request code

EBADSLT 57 Invalid slot

EBFONT 59 Bad font file format

ENOSTR 60 Device not a stream

ENODATA 61 No data available

ETIME 62 Timer expired

ENOSR 63 Out of streams resources

ENONET 64 Machine is not on the network

ENOPKG 65 Package not installed

EREMOTE 66 Object is remote

ENOLINK 67 Link has been severed

EADV 68 Advertise error

ESRMNT 69 Srmount error

ECOMM 70 Communication error on send

EPROTO 71 Protocol error

EMULTIHOP 72 Multihop attempted

EDOTDOT 73 RFS specific error

EBADMSG 74 Not a data message

EOVERFLOW 75 Value too large for defined data type

ENOTUNIQ 76 Name not unique on network

EBADFD 77 File descriptor in bad state

EREMCHG 78 Remote address changed

ELIBACC 79 Can not access a needed shared library

ELIBBAD 80 Accessing a corrupted shared library

ELIBSCN 81 .lib section in a.out corrupted

ELIBMAX 82 Attempting to link in too many shared libraries

ELIBEXEC 83 Cannot exec a shared library directly

EILSEQ 84 Illegal byte sequence

ERESTART 85 Interrupted system call should be restarted

ESTRPIPE 86 Streams pipe error

EUSERS 87 Too many users

ENOTSOCK 88 Socket operation on non-socket

EDESTADDRREQ 89 Destination address required

EMSGSIZE 90 Message too long

EPROTOTYPE 91 Protocol wrong type for socket

ENOPROTOOPT 92 Protocol not available

EPROTONOSUPPORT 93 Protocol not supported

Page 194

ESOCKTNOSUPPORT 94 Socket type not supported

EOPNOTSUPP 95 Operation not supported on transport endpoint

EPFNOSUPPORT 96 Protocol family not supported

EAFNOSUPPORT 97 Address family not supported by protocol

EADDRINUSE 98 Address already in use

EADDRNOTAVAIL 99 Cannot assign requested address

ENETDOWN 100 Network is down

ENETUNREACH 101 Network is unreachable

ENETRESET 102 Network dropped connection because of reset

ECONNABORTED 103 Software caused connection abort

ECONNRESET 104 Connection reset by peer

ENOBUFS 105 No buffer space available

EISCONN 106 Transport endpoint is already connected

ENOTCONN 107 Transport endpoint is not connected

ESHUTDOWN 108 Cannot send after transport endpoint shutdown

ETOOMANYREFS 109 Too many references: cannot splice

ETIMEDOUT 110 Connection timed out

ECONNREFUSED 111 Connection refused

EHOSTDOWN 112 Host is down

EHOSTUNREACH 113 No route to host

EALREADY 114 Operation already in progress

EINPROGRESS 115 Operation now in progress

ESTALE 116 Stale NFS file handle

EUCLEAN 117 Structure needs cleaning

ENOTNAM 118 Not a XENIX named type file

ENAVAIL 119 No XENIX semaphores available

EISNAM 120 Is a named type file

EREMOTEIO 121 Remote I/O error

EDQUOT 122 Quota exceeded

ENOMEDIUM 123 No medium found

EMEDIUMTYPE 124 Wrong medium type

Sockets – accept()
Accept an incoming request.

accept(int s, struct sockaddr *addr, socklen_t *addrlen)

Page 195

Here we can block waiting for an incoming connection request from the server socket.
We will return immediately if there is a client connection awaiting acceptance. The
address of the client is returned to us along with its length.

If we try and accept too many concurrent sockets, the ESP8266 may return ENFILE to
indicate that we have an overflow.

Sockets – bind()
Associate a socket with an address.

bind(int s, const struct sockaddr *name, socklen_t namelen)

The name parameter is the socket address to be bound to the socket. The namelen
provides the length of the address. If the sin_add.s_addr is htonl(INADDR_ANY) then we
are being a server listening on any incoming IP address.

A return of < 0 on error.

Here is an example of us defining ourselves as a server:

struct sockaddr_in serverAddr;
serverAddr.sin_family = AF_INET;
serverAddr.sin_addr.s_addr = htonl(INADDR_ANY);
serverAddr.sin_port = htons(80);

int rc = bind(serverSocket, (struct sockaddr *)&serverAddr, sizeof(serverAddr));

Sockets – close()
Close the corresponding socket.

close(int s)

Close the socket.

Sockets – closesocket()
Close the corresponding socket.

closesocket(int s)

Close the socket.

Sockets – connect()
Connect to a server.

connect(int s, const struct sockaddr *partnerAddr, socklen_t addrlen)

Page 196

Connect the socket to a partner. The address of the partner is supplied in the
partnerAddr field. This is a client initiated call and is expected to connect with a
listening server.

Sockets – fcntl()
Perform control functions.

fcntl(int s, int cmd, int val)

We can set control functions on sockets here.

Command Value Description

F_SETFL O_NONBLOCK Set the socket non blocking.

Sockets – freeaddrinfo()

Sockets – getaddrinfo()

Sockets – gethostbyname()

Sockets – getpeername()
Retrieve the address associated with the partner/peer to which the socket is connected.

getpeername (int s, struct sockaddr *peerAddr, socklen_t *namelen)

Note that namelen must be primed with the size of the available address buffer.

Sockets – getsockname()
Retrieve the current local address to which the socket is bound.

getsockname (int s, struct sockaddr *name, socklen_t *namelen)

Note that namelen must be primed with the size of the available address buffer.

Sockets – getsockopt()
getsockopt (int s, int level, int optname, void *optval, socklen_t *optlen)

An important example of using this function is to retrieve the last error associated with
the socket. The following code fragment illustrates this:

int espx_last_socket_errno(int socket) {

int ret = 0;

u32_t optlen = sizeof(ret);

getsockopt(socket, SOL_SOCKET, SO_ERROR, &ret, &optlen);

return ret;

}

Page 197

Sockets – htonl()
Convert a host formatted long integer to network byte order

Sockets – htons()
Convert a host formatted short integer to network byte order.

Sockets – inet_ntop()

Sockets – inet_pton()

Sockets – ioctlsocket()
ioctl(int s, long cmd, void *argp)

Sockets – listen()
Start listening for incoming connections.

listen(int s, int backlog)

If we are bound as a server, we will start to listen for incoming connections requests on
the socket. The backlog parameter defines how many sockets we can keep a handle to
before we accept them.

A return value < 0 means an error.

Sockets – read()
Receive data from a partner.

ssize_t read(int s, void *mem, size_t len)

Similar to the recv() function.

See also:

• Sockets – recv()

• Sockets – recvfrom()

Sockets – recv()
Receive data from a partner.

ssize_t recv(int s,
 void *mem,
 size_t len,
 int flags)

This function returns the number of bytes actually received. A value of -1 indicates an
error. A value of zero indicates the partner having closed the connection.

The flags is the boolean combination of:

• MSG_CMSG_CLOEXEC

Page 198

• MSG_DONTWAIT – Indicate that we don't want to block waiting for data. If there is
no data immediately available for us to receive, we return -1 to indicate an error
and the error code is "EAGAIN".

• MSG_ERRQUEUE

• MSG_OOB

• MSG_PEEK

• MSG_TRUNC

• MSG_WAITALL

See also:

• Sockets – read()

• Sockets – recvfrom()

• man(2) - recv

Sockets – recvfrom()
recvfrom(int s,
 void *mem,
 size_t len,
 int flags,
 struct sockaddr *from,
 socklen_t *fromlen)

See also:

• Sockets – read()

• Sockets – recv()

Sockets – select()
Check for data available for reading or writing.

select(int maxfdp1, fd_set *readset, fd_set *writeset, fd_set *exceptset, struct timeval
*timeout)

Sockets – send()
Send a set of bytes down the socket to the partner.

ssize_t send(int s, const void *dataptr, size_t size, int flags)

The data pointed to by dataptr for size bytes is transmitted.

See also:

• man(2) – send

Page 199

http://man7.org/linux/man-pages/man2/send.2.html
http://man7.org/linux/man-pages/man2/recv.2.html

Sockets – sendto()
Send data to a UDP partner.

sendto(int s,
 const void *dataptr,
 size_t size,
 int flags,
 const struct sockaddr *to,
 socklen_t tolen)

Sockets – setsockopt()
setsockopt (int s, int level, int optname, const void *optval, socklen_t optlen)

The options that are anticipated to be available are:

• TCP_NODELAY – Disable the Nagle algorithm.

• SO_KEEPALIVE – Enable liveness pinging.

Sockets – shutdown()
Shutdown parts of a socket.

shutdown(int s, int how)

Shutdown all or part of the socket.

The socket is shutdown based on the how parameter which may be one of:

• SHUT_RD – No further receives are allowed.

• SHUT_WR – No further writes are allowed.

• SHUT_RDWR – No further reads or writes are allowed.

Sockets – socket()
Create a new socket for the specific domain, type and protocol.

socket(int domain, int type, int protocol)

Domain can be one of:

• AF_INET – TCP/IP

• Others …

Type can be one of:

• SOCK_STREAM

• SOCK_DGRAM

• SOCK_RAW

Page 200

Protocol can be one of:

• IPPROTO_IP

• IPPROTO_TCP

• IPPROTO_UDP

A common usage pattern is:

int sock = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)

Returns a new socket descriptor or a value < 0 on error.

Sockets – write()
write(int s, const void *dataptr, size_t size)

Socket data structures

Sockets – struct sockaddr

Sockets – struct sockaddr_in

• sin_family – AF_INET

• sin_port

• struct in_addr sin_addr – This structure has a member called s_addr which is an
IP address. Special values have special meanings. For example INADDR_ANY
is any address.

Java Sockets
The sockets API is the defacto standard API for programming against TCP/IP. My
programming language of choice is Java and it has full support for sockets. What this
means is that I can write a Java based application that leverages sockets to
communication with the ESP8266. I can send and receive data through quite easily.

In Java, there are two primary classes that represents sockets, those are
java.net.Socket which represents a client application which will form a connection and
the second class is java.net.ServerSocket which represents a server that is listening
on a socket awaiting a client connection. Since the ESP8266 can be either a client or a
server, both of these Java classes will come into play.

To connect to an ESP8266 running as a server, we need to know the IP address of the
device and the port number on which it is listening. Once we know those, we can
create an instance of the Java client with:

Page 201

Socket clientSocket = new Socket(ipAddress, port);

This will form a connection to the ESP8266. Now we can ask for both an InputStream
from which to receive partner data and an OutputStream to which we can write data.

InputStream is = clientSocket.getInputStream();
OutputStream os = clientSocket.getOutputStream();

When we are finished with the connection, we should call close() to close the Java side
of the connection:

clientSocket.close();

It really is as simple as that. Here is an example application:

package kolban;

import java.io.OutputStream;
import java.net.Socket;

import org.apache.commons.cli.CommandLine;
import org.apache.commons.cli.CommandLineParser;
import org.apache.commons.cli.DefaultParser;
import org.apache.commons.cli.Options;

public class SocketClient {
 private String hostname;
 private int port;

 public static void main(String[] args) {
 Options options = new Options();
 options.addOption("h", true, "hostname");
 options.addOption("p", true, "port");
 CommandLineParser parser = new DefaultParser();
 try {
 CommandLine cmd = parser.parse(options, args);

 SocketClient client = new SocketClient();
 client.hostname = cmd.getOptionValue("h");
 client.port = Integer.parseInt(cmd.getOptionValue("p"));
 client.run();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 public void run() {
 try {
 int SIZE = 65000;
 byte data[] = new byte[SIZE];
 for (int i = 0; i < SIZE; i++) {
 data[i] = 'X';
 }
 Socket s1 = new Socket(hostname, port);
 OutputStream os = s1.getOutputStream();
 os.write(data);

Page 202

 s1.close();
 System.out.println("Data sent!");
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
} // End of class
// End of file

To configure a Java application as a socket server is just as easy. This time we create
an instance of the SocketServer class using:

SocketServer serverSocket = new SocketServer(port)

The port supplied is the port number on the machine on which the JVM is running that
will be the endpoint of remote client connection requests. Once we have a
ServerSocket instance, we need to wait for an incoming client connection. We do this
using the blocking API method called accept().

Socket partnerSocket = serverSocket.accept();

This call blocks until a client connect arrives. The returned partnerSocket is the
connected socket to the partner which can used in the same fashion as we previously
discussed for client connections. This means that we can request the InputStream and
OutputStream objects to read and write to and from the partner. Since Java is a multi-
threaded language, once we wake up from accept() we can pass off the received
partner socket to a new thread and repeat the accept() call for other parallel
connections. Remember to close() any partner socket connections you receive when
you are done with them.

So far, we have been talking about TCP oriented connections where once a connection
is opened it stays open until closed during which time either end can send or receive
independently from the other. Now we look at datagrams that use the UDP protocol.

The core class behind this is called DatagramSocket. Unlike TCP, the DatagramSocket
class is used both for clients and servers.

First, let us look at a client. If we wish to write a Java UDP client, we will create an
instance of a DatagramSocket using:

DatagramSocket clientSocket = new DatagramSocket();

Next we will "connect" to the remote UDP partner. We will need to know the IP address
and port that the partner is listening upon. Although the API is called "connect", we
need to realize that no connection is formed. Datagrams are connectionless so what
we are actually doing is associating our client socket with the partner socket on the
other end so that when we actually wish to send data, we will know where to send it to.

clientSocket.connect(ipAddress, port);

Page 203

Now we are ready to send a datagram using the send() method:

DatagramPacket data = new DatagramPacket(new byte[100], 100);
clientSocket.send(data);

To write a UDP listener that listens for incoming datagrams, we can use the following:

DatagramSocket serverSocket = new DatagramSocket(port);

The port here is the port number on the same machine as the JVM that will be used to
listen for incoming UDP connections.

To wait for an incoming datagram, call receive().

DatagramPacket data = new DatagramPacket(new byte[100], 100);
clientSocket.receive(data);

If you are going to use the Java Socket APIs, read the JavaDoc thoroughly for these
classes are there are many features and options that were not listed here.

See also:

• Java tutorial: All About Sockets
• JDK 8 JavaDoc

WebSockets
WebSockets is both an API and a protocol introduced in HTML5. Simply put, if we
imagine an HTTP server sitting waiting for incoming HTTP requests, we can convert a
current request into a socket connection between the server and the browser such that
either end can send data to be received by its partner.

Here we see a raw request to upgrade an HTTP connection to a WebSocket
connection:

GET / HTTP/1.1
Host: 192.168.1.10
Connection: Upgrade
Pragma: no-cache
Cache-Control: no-cache
Upgrade: websocket
Origin: file://
Sec-WebSocket-Version: 13
User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/46.0.2490.86 Safari/537.36
Accept-Encoding: gzip, deflate, sdch
Accept-Language: en-US,en;q=0.8
Sec-WebSocket-Key: saim6TzFH+zVb4qY2nrh0Q==
Sec-WebSocket-Extensions: permessage-deflate; client_max_window_bits

See also:

• html5rocks – Introducing WebSockets: Bringing Sockets to the Web

Page 204

http://www.html5rocks.com/en/tutorials/websockets/basics/
file:///C:/Users/Kolban/Documents/
https://docs.oracle.com/javase/8/docs/api/
https://docs.oracle.com/javase/tutorial/networking/sockets/

• The WebSocket protocol – RFC6455

• The WebSocket API

A WebSocket browser app
The highest likelihood is that you will be running your ESP8266 as a WebSocket server.
This would imply that you are going to have browser hosted applications that will be
connecting to a WebSocket server as clients and from there, you will likely be writing
some WebSocket client code … if nothing else then for unit testing your server.
Because of that, we will now spend some time talking about what is involved in writing a
WebSocket client application.

Let us assume that we will be writing JavaScript hosted in the browser. We start by
creating an instance of a WebSocket object passing in the URL to the WebSocket
server:

var ws = new WebSocket("ws://<somehost>[:<someport>]");

The WebSocket API is mostly event driven and there are a number event types of
interest to us:

• open – Invoked when the connection to the WebSocket server has been
established and we are now ready to send or receive data. We can define this
with the "onopen" property of the WebSocket as a function reference.

• message – Receive a message from the server. We can define this with the
"onmessage" property of the WebSocket as a function reference.

• error – Receive an indication that an error was detected. We can define this
with the "onerror" property of the WebSocket as a function reference.

• close – Receive an indication that a request to close the connection was
detected. We can define this with the "onclose" property of the WebSocket as a
function reference.

Event handlers can be registered either with an "on<Event>" mechanism or with an
addEventListener() call.

There are two methods defined on a WebSocket object. Those are:

• send – Send data to a WebSocket server

• close – Close the connection to a WebSocket server. The close() method takes
two parameters:

◦ close code – An integer close code describing the reason for the close.

▪ 1000 – CLOSE_NORMAL

Page 205

http://www.w3.org/TR/websockets/
http://tools.ietf.org/html/rfc6455
http://tools.ietf.org/html/rfc6455
http://tools.ietf.org/html/rfc6455

▪ 1001 – CLOSE_GOING_AWAY

◦ status message – A string describing the close reason.

Finally, there are a few attributes:

• readyState – The state of the WebSocket connection. Values include:

◦ WebSocket.CONNECTING

◦ WebSocket.OPEN

◦ WebSocket.CLOSING

◦ WebSocket.CLOSED

• bufferedAmount – Amount of data that is buffered pending transmission to the
WebSocket server

• protocol – The WebSocket server selected protocol being used.

FreeRTOS WebSocket
The FreeRTOS SDK distributes an implementation of the noPoll open source project.

To use noPoll in your app, you must include "nopoll.h".

The context is very important and should be created at the start and disposed of at the
end. For example:

noPollCtx *ctx = nopoll_ctx_new();

// Do something …
nopoll_ctx_unref();

Once a context has been created, we can then register ourselves as a server:

noPollCon *listener = nopoll_listener_new(ctx, "0.0.0.0", "1234");
nopoll_ctx_set_on_msg(ctx, listener_on_message_handler, NULL);
nopoll_loop_wait(ctx, 0);

When a message is received, the registered function (listener_on_message_handler)
will be invoked:

void listener_on_message_handler(
 noPollCtx *ctx,
 noPollConn *conn,
 noPollMsg *msg,
 noPollPtr *userData) {
 // Do something
 nopoll_conn_send_text(conn, "Thanks", 5);
}

An example WebSocket application is supplied by Espressif in the FreeRTOS SDK for
ESP8266. The sample can be found in /examples/websocket_demo.

Page 206

See also:

• noPoll: OpenSource WebSocket toolkit

• The WebSocket protocol – RFC6455

• The WebSocket API

Mongoose WebSocket
Using Cesanta's Mongoose libraries, we can setup a WebSocket server. After setting
up a binding for incoming network requests we can call
mg_set_protocol_http_websocket(). This will attach an event handler to the network
protocol level to handle events associated with WebSockets. Specifically, these are the
following events we are interested in:

• MG_EV_WEBSOCKET_HANDSHAKE_REQUEST

• MG_EV_WEBSOCKET_HANDSHAKE_DONE

• MG_EV_WEBSOCKET_FRAME

When an MG_EV_WEBSOCKET_HANDSHAKE_REQUEST is received, the data contains a parsed
HTTP request as a struct http_message.

The struct http_message contains:

• message

• method

• uri

• proto

• resp_code

• resp_status_msg

• query_string

• header_names

• header_values

• body

When an MG_EV_WEBSOCKET_FRAME is received, the data contains a reference to a struct
websocket_message. The struct websocket_message contains:

• data – The data passed from the partner.

• size – The size of the passed data.

• flags – Flags (unknown).

Page 207

http://www.w3.org/TR/websockets/
http://tools.ietf.org/html/rfc6455
http://tools.ietf.org/html/rfc6455
http://tools.ietf.org/html/rfc6455
http://www.aspl.es/nopoll/

Web Servers
A Web Server is a software component that listens for incoming HTTP requests from
Web browsers. There are many implementations of Web Servers that can run within an
ESP8266 environment.

Mongoose
Mongoose provides an API that one can use to build a rich and powerful HTTP server.
At a high level, we call mg_mgr_init() to initialize the environment. Next we bind it to a
handler using mg_bind(). Finally, we poll the server for work using mg_mgr_poll().

void setupMongoose() {
 struct mg_mgr mgr;
 printf("Starting mongoose setup\n");
 mg_mgr_init(&mgr, NULL);
 printf("Succesfully inited\n");
 mg_bind(&mgr, "80", evHandler);
 printf("Succesfully bound\n");
 while(1) {
 mg_mgr_poll(&mgr, 1000);
 }
}

When a request arrives from a browser, we consider that an event which is handed off
to an event handler. The signature of an event handler is:

void eventHandler(
 struct mg_connection *nc,
 int ev,
 void *evData)

Where:

• nc – The connection that received the event.

• ev – The type of event that triggered the callback.

• evData – Data associated with the event.

Thus far we will receive callbacks for socket connections. If we wish, we can now
register that we wish to parse the incoming data as an HTTP request. We do that by
making a call to mg_set_protocol_http_websocket().

When setup as an HTTP server, an incoming browser request will appear with the event
type of MG_EV_HTTP_REQUEST. The evData passed in will be an instance of struct
http_message from which the nature of the request can be determined.

See also:

Page 208

• Github: cesanta/mongoose

• Mongoose Developer Centre

Programming using Eclipse
Eclipse is a popular open source framework primarily used for hosting application
development tools. Although primarily geared for building Java applications, it also has
first class C and C++ support.

A project for building ESP8266 applications using Eclipse can be found here:

• http://www.esp8266.com/viewtopic.php?f=9&t=820

Do not include spaces in any of the path parts pointing to the workspace. Here are
some notes on installing this project … however, always read the documentation
accompanying the project.

Download the Espressif-ESP8266-DevKit-vxxx-x86. This is a large download of approx
125MBytes.

Run the installer. It will ask you for your choice of installation language.

Next comes the splash screen:

Page 209

http://www.esp8266.com/viewtopic.php?f=9&t=820
https://www.cesanta.com/developer/mongoose
https://github.com/cesanta/mongoose

Next comes the license agreement:

Now the selection of which components to install:

Page 210

Finally a confirmation dialog to review what you have selected.

The result of this will be a new directory structure at C:\Espressif\.

Page 211

There are other dependencies that you will need which are listed at the link above.
These include:

• A Java runtime environment. I use the latest Java 8 from Oracle.

• Eclipse environment with C/C++ developer tools. I use the latest "Mars" release.

• MinGW – Unix tools and utilities that execute on Windows.

• MinGW installation helper – A cache and list of the MinGW packages that need
to be installed for correct operation.

The Makefiles supplied with the package are key. They have been crafted to provide
the easiest compiles. The targets contained within the Makefiles include:

• all – Compile all the code but do not flash.

• clean – Clean any previous builds.

• flash – Compile the code if needed and then flash.

• flashboot

• flashinit

• flashonefile

There are some flags that are used with the Makefile that you can edit. These include:

• VERBOSE=1 – Enable verbosity which includes debug information. Specifically the
compilation commands are shown.

See also:

• Eclipse.org
• Eclipse C/C++ Development Tooling (CDT)
• Primary forum thread

Installing the Eclipse Serial terminal
Although there are many excellent serial terminals available as stand-alone Windows
applications, an alternative is the Eclipse Terminal which also has serial support. This
allows a serial terminal to appear as a view within the Eclipse IDE. It does not come
installed by default but the steps to add are not complex.

First start Eclipse (I use the Mars release).

Go to Help > Install new software.

Select the eclipse download repository.

Select Mobile and Device development > TM Terminal.

Page 212

http://www.esp8266.com/viewtopic.php?t=820
https://projects.eclipse.org/projects/tools.cdt
https://eclipse.org/

Step through the following sections and when prompted to restart, accept yes.

We are not ready to use it yet, we must add serial port support into Eclipse.

Go back to Help > Install new software and add a new repository

Page 213

The repository URL is:

• http://archive.eclipse.org/tm/updates/rxtx/

Now we can select the Serial port runtime support library:

Page 214

http://archive.eclipse.org/tm/updates/rxtx/

Follow through the further navigation screens and restart Eclipse when prompted.

We now have terminal support installed and are ready to use it. From Windows > Show
View > Other we will find a new category called "Terminal".

Page 215

Opening this adds a Terminal view to our perspective. There is a button that will allow
us to open a new terminal instance that is shown in the following image:

Clicking this brings up the dialog asking us for the type of terminal and the properties.
For our purposes, we wish to choose a serial terminal. Don't forget to also set the port
and baud rate to match what your ESP8266 uses.

Page 216

After clicking OK, after a few seconds we will see that we are connected and a new
disconnect icon appears:

And now the terminal is active. For my purposes, I connect this terminal to UART1 of
the ESP8266 for debugging while leaving UART0 for flashing new copies of my
application. Here is an example of what my typical window looks like:

Page 217

You can invert the colors to produce a white on black visualization which many users
prefer.

Web development using Eclipse
Eclipse also provides a first class web development environment for writing and testing
web apps including HTML pages. It is suggested that the Eclipse Web Developer Tools
be installed.

Page 218

Programming using the Arduino IDE
Long before there was an ESP8266, there was the Arduino. A vitally important
contribution to the open source hardware community and the entry point for the majority
of hobbyists into the world of home built circuits and processors.

One of the key attractions about the Arduino is its relative low complexity allowing
everyone the ability to build something quickly and easily. The Integrated Development
Environment (IDE) for the Arduino has always been free of charge for download from
the Internet. If a professional programmer were to sit down with it, they would be
shocked at its apparent limited capabilities. However, the subset of function it provides
compared to a "full featured" IDE happen to cover 90% of what one wants to achieve.
Combine that with the intuitive interface and the Arduino IDE is a force to be reckoned
with.

Here is what a simple program looks like in the Arduino IDE:

In Arduino parlance, an application is termed a "sketch". Personally, I'm not a fan of that
phrase but I'm sure research was done to learn that this is the least intimidating name

Page 219

for what would otherwise be called a C language program and that would intimidate the
least number of people.

The IDE has a button called "Verify" which, when clicked, compiles the program. Of
course, this will also have the side-effect that it will verify that the program compiles
cleanly … but compilation is what it does. A second button is called "Upload" that, when
clicked, what it does is deploy the application to the Arduino.

In addition to providing a C language editor plus tools to compile and deploy, the
Arduino IDE provides pre-supplied libraries of C routines that "hide" complex
implementation details that might otherwise be needed when programming to the
Arduino boards. For example, UART programming would undoubtedly have to set
registers, handle interrupts and more. Instead of making the poor users have to learn
these technical APIs. the Arduino folks provided high level libraries that could be called
from the sketches with cleaner interfaces which hide the mechanical "gorp" that
happens under the covers. This notion is key … as these libraries, as much as anything
else, provide the environment for Arduino programmers.

Interesting as this story may be, you may be asking how this relates to our ESP8266
story? Well, a bunch of talented individuals have built out an Open Source project on
Github that provides a "plug-in" or "extension" to the Arduino IDE tool (remember, that
the Arduino IDE is itself free). What this extension does is allow one to write sketches in
the Arduino IDE that leverage the Arduino library interfaces which, at compile and
deployment time, generate code that will run on the ESP8266. What this effectively
means is that we can use the Arduino IDE and build ESP8266 applications with the
minimum of fuss.

Implications of Arduino IDE support
The ESP8266 is still new (as of July 2015) and no-one knows where this little chip will
be in a year or five years time. Will it become the heart and soul of a new range of
hobbyist boards and professional appliances? Will there be something newer and
better just around the next corner? We simply don't know.

The ability to treat it as though it were "like" an Arduino is a notion that I haven't been
able to fully absorb yet. ESP8266 is a Tensilica CPU unlike the Arduino which is an
ATmega CPU. Espressif have created dedicated and architected API in the form of
their SDK for directly exposed ESP8266 APIs. The Arduino libraries for ESP8266 seem
to map their intent to these exposed APIs. For these reasons and similar, one might
argue that the Arduino support is an unnecessary facade on top of a perfectly good
environment and by imposing an "alien" technology model on top of the ESP8266 native
functions, we are masking access to lower levels of knowledge and function. Further,
thinking of the ESP8266 as though it were an Arduino can lead to design problems. For

Page 220

example, the ESP8266 needs regular control in order to handle WiFi and other internal
actions. This conflicts with the Arduino model where the programmer can do what he
wants within the loop function for as long as he wants.

The flip side is that the learning curve to get something running on an Arduino has been
shown to be extremely low. It doesn't take long at all to get a blinky light going on a
breadboard. With that train of thought, why should users of the ESP8266 be penalized
for having to install and learn more complex tool chains and syntax to achieve the same
result with more ESP8266 oriented tools and techniques? The name of the game
should be to allow folks to tinker with CPUs and sensors without having to have
university degrees in computing science or electrical engineering and if the price one
pays to get there is to insert a "simple to use" illusion then why not? If I build a paper
airplane and throw it out my window … I may get pleasure from that. A NASA rocket
scientist shouldn't scoff at my activities or lack of knowledge of aerodynamics … the
folded paper did its job and I achieved my goal. However, if my job was to put a man on
the moon, the ability to visualize the realities of the technology at the "realistic" level
becomes extremely important.

Installing the Arduino IDE with ESP8266 support
To assemble this environment, one must download a current version of the Arduino IDE.
This will be about 140 Mbytes.

I download the ZIP file version and then extract its content.

Next, we launch the Arduino IDE and open the Preferences dialog:

Page 221

In the Additional Boards Manager URLs field enter the URL for the ESP8266 package
which is:

http://arduino.esp8266.com/stable/package_esp8266com_index.json

Page 222

Select the Boards Manager from the Tools > Board menu:

Page 223

Install the ESP8266 support:

Page 224

This will contact the Internet and download the artifacts necessary for ESP8266
support.

Once completed, in the Arduino IDE Board selections, you will find the "Generic
ESP8266 Module":

Page 225

Now we are ready to start building, compiling and running sketches.

A simple and sample sketch I recommend for testing is:

void setup() {
 Serial1.begin(115200);
}

void loop() {
 Serial1.println("Hello! - millis() = " + String(millis()));
}

When run, a loop of messages will appear on the UART1 output saying hello and the
number of milliseconds since last boot. As much as anything, this will validate that the

Page 226

environment has been setup correctly, you can compile a program and that deployment
to the ESP8266 is successful.

See also:

• Github: esp8266/Arduino
• Arduino IDE

Tips for working in the Arduino environment
Remember that the Arduino environment is two things. First, an actual application that
you install on your machine providing the Arduino IDE. Second, a set of libraries that
model those available to an actual Arduino device which are mapped to ESP8266
capabilities. With that in mind, here are some hints and tips that I find useful when
writing Arduino sketches for an ESP8266 environment.

Initialize global classes in setup()
Within an Arduino sketch, we have a pre-supplied function called setup() that is called
only once during ESP8266 boot-up. Within this function, you perform one time
initialization functions. In C++, we have the ability to create class instances globally.
For example:

MyClass myClass(123);

void setup() {
// Some code here

}

instead of this, use the following:

MyClass *myClass;

void setup() {
myClass = new MyClass(123);
// Some code here

}

This of course changes your variable's data type. It went from being an instance of
MyClass to being a pointer to an instance of MyClass which means that you might have
to change other aspects of your program … but the reason for this is that in the first
case, the constructor for your MyClass instance ran outside of the setup() and we can't
say what state the environment might have been in at that point. Within the setup()
code, we have a reasonable expectation of the environment context.

Invoking Espressif SDK API from a sketch
There is nothing to prevent you from invoking Espressif SDK API from within your
sketch. You must include any include files that are necessary. Here is an example of
including "user_interface.h".

Page 227

https://www.arduino.cc/en/Main/Software
https://github.com/esp8266/Arduino

extern "C" {
#include "user_interface.h"

}

Notice the bracketing with the C++ construct that causes the content to appear as
though it were being defined in a C program.

Exception handling
When an exception is detected in the code, the code halts. Typically we see the
following logged to the serial port when this happens:

 ets Jan 8 2013,rst cause:2, boot mode:(1,7)

 ets Jan 8 2013,rst cause:4, boot mode:(1,7)

wdt reset

Unfortunately, this tells us absolutely nothing about the location or cause of the issue.

The SPIFFS file system

The mkspiffs command
A tool has been made available that builds a "spiffs" file system binary from a directory
structure found on disk. The command is called "mkspiffs" and has its own github
project.

The full syntax of the command is:

mkspiffs {-c <pack_dir>|-l|-i} [-b <number>] [-p <number>] [-s <number>] [–]
[-version] [-h] <image_file>

Where the parameters are:

• -c <pack_dir> or --create <pack_dir> – Create a spiffs image file from
examination of a directory to be packed into the spiffs image.

• -l or --list – List the content of an existing image file.

• -i or --visualize – Visualize the spiffs image.

• -b <number> or --block <number> – The File System size blocks size in bytes.

• -p <number> or --page <number> – The File System page size in bytes.

• -s <number> or --size <number> – The File System image size in bytes.

• -- or --ignore_rest – Ignore the remaining arguments.

• --version – Display the version information.

Page 228

• -h or --help – Display usage/help information

• <image_file> – The file to contain (or already contains) the spiffs image.

See also:

• Github: igrr/mkspiffs

The architecture of the Arduino IDE support
The Arduino IDE for ESP8266 uses the concept of a "board manager". The thinking
behind this was that with the growing number of Arduino related boards out there, all
with different capabilities and subtleties, the act of adding support for a new type of
device (board) should be made generic and easier. To that end, support was added in
1.6.4 and beyond for the board manager JSON file. This file describes the content of a
new board and where to "get" the parts necessary for building applications.

For the ESP8266 Arduino IDE, the board JSON file can be found at:

http://arduino.esp8266.com/stable/package_esp8266com_index.json

If we examine the content of this file in conjunction with the specification of the Arduino
IDE package file format, we learn a lot of interesting things.

Here is the file as of 2015-08-03 …

{

 "packages": [{
 "name":"esp8266",
 "maintainer":"ESP8266 Community",
 "websiteURL":"https://github.com/esp8266/Arduino",
 "email":"ivan@esp8266.com",
 "help":{
 "online":"http://arduino.esp8266.com/versions/1.6.5-947-
g39819f0/doc/reference.html"
 },

 "platforms": [{
 "name":"esp8266",
 "architecture":"esp8266",
 "version":"1.6.5-947-g39819f0",
 "category":"ESP8266",
 "url":"http://arduino.esp8266.com/versions/1.6.5-947-g39819f0/esp8266-1.6.5-947-
g39819f0.zip",
 "archiveFileName":"esp8266-1.6.5-947-g39819f0.zip",
 "checksum":"SHA-
256:79a395801a94c77f4855f3921b9cc127d679d961ec207e7fb89f90754123d66a",
 "size":"2295584",
 "help":{
 "online":"http://arduino.esp8266.com/versions/1.6.5-947-
g39819f0/doc/reference.html"
 },
 "boards":[

Page 229

https://github.com/igrr/mkspiffs

 {
 "name":"Generic ESP8266 Module"
 },
 {
 "name":"Olimex MOD-WIFI-ESP8266(-DEV)"
 },
 {
 "name":"NodeMCU 0.9 (ESP-12 Module)"
 },
 {
 "name":"NodeMCU 1.0 (ESP-12E Module)"
 },
 {
 "name":"Adafruit HUZZAH ESP8266 (ESP-12)"
 },
 {
 "name":"SweetPea ESP-210"
 }
],
 "toolsDependencies":[{
 "packager":"esp8266",
 "name":"esptool",
 "version":"0.4.5"
 },
 {
 "packager":"esp8266",
 "name":"xtensa-lx106-elf-gcc",
 "version":"1.20.0-26-gb404fb9"
 }]
 }],

 "tools": [{
 "name":"esptool",
 "version":"0.4.5",
 "systems": [
 {
 "host":"i686-mingw32",
 "url":"https://github.com/igrr/esptool-ck/releases/download/0.4.5/esptool-
.4.5-win32.zip",
 "archiveFileName":"esptool-0.4.5-win32.zip",
 "checksum":"SHA-
256:1b0a7d254e74942d820a09281aa5dc2af1c8314ae5ee1a5abb0653d0580e531b",
 "size":"17408"
 },
 {
 "host":"x86_64-apple-darwin",
 "url":"https://github.com/igrr/esptool-ck/releases/download/0.4.5/esptool-
0.4.5-osx.tar.gz",
 "archiveFileName":"esptool-0.4.5-osx.tar.gz",
 "checksum":"SHA-
256:924d31c64f4bb9f748e70806dafbabb15e5eb80afcdde33715f3ec884be1652d",
 "size":"11359"
 },
 {
 "host":"i386-apple-darwin",

Page 230

 "url":"http://arduino.esp8266.com/esptool-0.4.5-1-gfaa5794-osx.tar.gz",
 "archiveFileName":"esptool-0.4.5-1-gfaa5794-osx.tar.gz",
 "checksum":"SHA-
256:722142071f6cf4d8c02dea42497a747e06abf583d86137a6a256b7db71dc61f6",
 "size":"20751"
 },
 {
 "host":"x86_64-pc-linux-gnu",
 "url":"https://github.com/igrr/esptool-ck/releases/download/0.4.5/esptool-
0.4.5-linux64.tar.gz",
 "archiveFileName":"esptool-0.4.5-linux64.tar.gz",
 "checksum":"SHA-
256:4ce799e13fbd89f8a8f08a08db77dc3b1362c4486306fe1b3801dee80cfa3203",
 "size":"12789"
 },
 {
 "host":"i686-pc-linux-gnu",
 "url":"https://github.com/igrr/esptool-ck/releases/download/0.4.5/esptool-
0.4.5-linux32.tar.gz",
 "archiveFileName":"esptool-0.4.5-linux32.tar.gz",
 "checksum":"SHA-
256:4aa81b97a470641771cf371e5d470ac92d3b177adbe8263c4aae66e607b67755",
 "size":"12044"
 }
]
 },
 {
 "name":"xtensa-lx106-elf-gcc",
 "version":"1.20.0-26-gb404fb9",
 "systems": [
 {
 "host":"i686-mingw32",
 "url":"http://arduino.esp8266.com/win32-xtensa-lx106-elf-gb404fb9.tar.gz",
 "archiveFileName":"win32-xtensa-lx106-elf-gb404fb9.tar.gz",
 "checksum":"SHA-
56:1561ec85cc58cab35cc48bfdb0d0087809f89c043112a2c36b54251a13bf781f",
 "size":"153807368"
 },
 {
 "host":"x86_64-apple-darwin",
 "url":"http://arduino.esp8266.com/osx-xtensa-lx106-elf-gb404fb9-2.tar.gz",
 "archiveFileName":"osx-xtensa-lx106-elf-gb404fb9-2.tar.gz",
 "checksum":"SHA-
256:0cf150193997bd1355e0f49d3d49711730035257bc1aee1eaaad619e56b9e4e6",
 "size":"35385382"
 },
 {
 "host":"i386-apple-darwin",
 "url":"http://arduino.esp8266.com/osx-xtensa-lx106-elf-gb404fb9-2.tar.gz",
 "archiveFileName":"osx-xtensa-lx106-elf-gb404fb9-2.tar.gz",
 "checksum":"SHA-
256:0cf150193997bd1355e0f49d3d49711730035257bc1aee1eaaad619e56b9e4e6",
 "size":"35385382"
 },
 {

Page 231

 "host":"x86_64-pc-linux-gnu",
 "url":"http://arduino.esp8266.com/linux64-xtensa-lx106-elf-
gb404fb9.tar.gz",
 "archiveFileName":"linux64-xtensa-lx106-elf-gb404fb9.tar.gz",
 "checksum":"SHA-
256:46f057fbd8b320889a26167daf325038912096d09940b2a95489db92431473b7",
 "size":"30262903"
 },
 {
 "host":"i686-pc-linux-gnu",
 "url":"http://arduino.esp8266.com/linux32-xtensa-lx106-elf.tar.gz",
 "archiveFileName":"linux32-xtensa-lx106-elf.tar.gz",
 "checksum":"SHA-
256:b24817819f0078fb05895a640e806e0aca9aa96b47b80d2390ac8e2d9ddc955a",
 "size":"32734156"
 }
]
 }]
 }]
}

Breaking this down, we have one package in this file which has the following sections:

• name – esp8266 – The name of the package itself

• maintainer – ESP8266 Community – Who maintains the package

• websiteURL – Where to go to find more about this package

• email – Who to email to find out more

• help – Where to go for on-line help

• platforms – The set of platforms on which this board runs

• tools – The details of required tools

For the platforms, we describe the details of each platform … currently there is only
one:

• name – esp8266

• architecture – esp8266

• version – The version ID of this package/platform

• category – ESP8266

• url – Where to download this platform

• archiveFileName – The name of the file

• checksum – A hash that can be used against the file to see if it has been tampered
with

Page 232

• size – The size in bytes of the file

• help – Where to read the docs for this platform

• boards – A list of boards that are associated with the platform.

• toolDependencies – The names of additional tools/components that are required

For the tools, this is a list of tools needed for the package. Each tool has the following:

• name – The logical name of the tool

• version – The version of the tool

• systems – A list of entries which define where to download the tool for a variety of
platforms including Windows, Linux and OSx.

With this information and a copy of the file, you should be able to see how some of the
pieces fit together.

When a package is installed, it is created in the directory:

C:\Users\<User>\AppData\Roaming\Arduino15\packages

For our ESP8266 story, the package is esp8266 and hence all the files can be found in:

C:\Users\<User>\AppData\Roaming\Arduino15\packages

we will call this the root.

Beneath the root we will find two directories:

• hardware

• tools

The tools directory contains the root of our tools needed for execution … these are the
C compiler and the upload tool.

The hardware folder contains the rest of our information.

Specifically the following folders:

• bootloaders – a mystery ...

• cores – Core header and source files providing the code always linked with our
sketches. This is the primary set of wrappers for the Arduino libraries.

• tools – The Espressif SDK

• libraries – The default libraries for our package

• variants – Header files that differ by variant of board selected

And the following files:

Page 233

• boards

• platform

• programmers

Within the Arduino IDE we can switch on verbose settings which results in additional
details being logged during compilation or upload. From these we can learn more about
what happens.

If we examine a typical compilation statement, we find the following.

xtensa-lx106-elf-gcc
-D__ets__
-DICACHE_FLASH
-U__STRICT_ANSI__
-Itools/sdk//include
-c
-g
-x assembler-with-cpp
-MMD
-DF_CPU=80000000L
-DARDUINO=10605
-DARDUINO_ESP8266_ESP01
-DARDUINO_ARCH_ESP8266
-DESP8266
-Icores\esp8266
-Ivariants\generic\cores\esp8266\cont.S
-o cont.S.o

xtensa-lx106-elf-gcc
-D__ets__
-DICACHE_FLASH
-U__STRICT_ANSI__
-Itools/sdk//include
-c
-Os
-g
-Wpointer-arith
-Wno-implicit-function-declaration
-Wl,-EL
-fno-inline-functions
-nostdlib
-mlongcalls
-mtext-section-literals
-falign-functions=4
-MMD
-std=gnu99
-DF_CPU=80000000L
-DARDUINO=10605
-DARDUINO_ESP8266_ESP01
-DARDUINO_ARCH_ESP8266
-DESP8266
-Icores\esp8266

Page 234

-Ivariants\generic
cores\esp8266\cont_util.c
-o cont_util.c.o

The contents of the core directory are the artifacts that are linked with your Arduino
sketches.

spiffs

abi.cpp

Arduino.h Primary include file for applications.

binary.h Binary definitions for the range 0-255 up to 8 bits.

cbuf.h Circular buffer.

Client.h

cont.h

cont.S

cont_util.c

core_esp8266_eboot_command.c

core_esp8266_flash_utils.c

core_esp8266_i2s.c

core_esp8266_main.cpp The main entry point into the ESP application.

core_esp8266_noniso.c

core_esp8266_phy.c

core_esp8266_postmortem.c

core_esp8266_si2c.c

core_esp8266_sigma_delta.c.unused

core_esp8266_timer.c

core_esp8266_wiring.c

core_esp8266_wiring_analog.c

core_esp8266_wiring_digital.c

core_esp8266_wiring_pulse.c

core_esp8266_wiring_pwm.c

core_esp8266_wiring_shift.c

debug.cpp

debug.h

eboot_command.h

Esp.cpp

Esp.h

esp8266_peri.h

flash_utils.h

HardwareSerial.cpp

Page 235

HardwareSerial.h

i2s.h

IPAddress.cpp

IPAddress.h

libc_replacements.c

pgmspace.cpp

pgmspace.h

Print.cpp

Print.h

Printable.h

Server.h

sigma_delta.h

stdlib_noniso.h

Stream.cpp

Stream.h

Tone.cpp

twi.h

Udp.h

Updater.cpp

Updater.h

user_config.h

Wcharacter.h

wiring_private.h

Wmath.cpp

Wstring.cpp

Wstring.h

When we look at how an application is uploaded, we see a command similar to the
following:

esptool.exe -vv -cd ck -cb 115200 -cp COM11 -ca 0x00000 -cf ESP_I2CScanner.cpp.bin

Building ESP Arduino apps using the Eclipse IDE
Now our heads are really going to hurt … there is no easy way to get through this … but
the story is important and the results are great.

So far we have seen that we can build ESP programs using a C compiler and the
Espressif SDK. We have also seen that we can build these programs within an Eclipse

Page 236

environment … also against the Espressif SDK. We have just examined the notion of
building programs using the Arduino IDE which provides mappings to many of the
Arduino libraries implemented for ESP. Now we are going to return to using Eclipse but
this time as an alternative to the Arduino IDE but still using the Arduino libraries to build
"Arduino flavored" ESP programs.

The key to this story is the excellent Open Source Eclipse tooling for Arduino building
found here:

http://eclipse.baeyens.it/index. s html

This set of plug-ins to the Eclipse framework leverages an existing Arduino environment
such as the one that we have just built which includes the ESP support. The plug-ins
interrogate the Arduino IDE setup and provide the build and editing tools used there.

Before going any further, it is vital that you get the ESP Arduino IDE working by
following all the instructions necessary to build solutions using that environment. That is
a prerequisite for getting the Eclipse environment working.

We have two choices for getting the Eclipse environment working. The first is to
download a fully prepared Eclipse environment that includes the C development tools
and the plug-ins for Arduino support. This is the easiest … however it is also likely that
you have an existing Eclipse framework already installed that you may wish to re-use or
extend. Eclipse is meant to be an extensible environment which provides a framework
into which additional plug-ins can be added as needed. In that pattern, we can
download the latest Eclipse framework (Mars) and then add in the relevant plug-ins.

Here is an example of getting ready using a pre-built Eclipse download.

First download a current overnight build … and extract its content. Note that the
maintainer is distributing files in tar.gz format. I use 7-Zip to decompress. The
download size is about 170MBytes so make sure you download sooner than later.
Make sure that you download the correct version of the Eclipse environment that
corresponds to the version of Java you have installed. For example, if you have 32bit
Java installed, don't download the 64bit version of Eclipse. If you do and attempt to
launch Eclipse, you will get errors that you will have to dig into only to find buried in logs
that there is an incompatibility. If you do make the error, the message you receive
might look like:

Page 237

http://www.7-zip.org/
http://eclipse.baeyens.it/index.shtml
http://eclipse.baeyens.it/index.shtml
http://eclipse.baeyens.it/index.shtml

As you can see, it isn't readily apparent what went wrong.

When you are ready to launch, start the program called "eclipseArduinoIDE".

If all has gone well, we will see the following:

Page 238

Now it is time to configure the Eclipse environment for to learn about our Arduino
environment. The recipes that follow are used to overcome some bugs so may change
over time …

First, we need to tell Eclipse where it can find our Arduino environment.

Open up Preferences and select Arduino:

Page 239

We need to change some of the settings.

For the Arduino IDE path, point to the root directory where your Arduino IDE is installed.
This should be the directory which contains the following:

Page 240

The next part is a little trickier. We need to supply values for both "Private Library
path" and "Private hardware path". These directories are the directories for the
Arduino ESP package and NOT the native Arduino. You will find these at the following
directories:

C:\Users\<Your
Userid>\AppData\Roaming\Arduino15\packages\esp8266\hardware\esp8266\<Your
Version>\libraries

C:\Users\<Your Userid>AppData\Roaming\Arduino15\packages\esp8266\hardware

I also recommend you change your "Build before upload" to be "Yes" at this point.

After entering, your screen might look like.

When applying the changes you made here, you may see the following warning a few
times:

Page 241

Click "Yes" to ignore the warnings and move on.

Next, we have to add "*.ino" as a new C++ file type … we do this again in preferences:

In the resulting dialog, add the following:

Page 242

We are getting close. Now we have a few final one-time tweaks to make. Find the file
called "platform.txt" which is located at:

C:\Users\<Your
Userid>\AppData\Roaming\Arduino15\packages\esp8266\hardware\esp8266\<Version>\platform
.txt

Edit this file with your text editor and find the line which reads:

tools.esptool.upload.pattern="{path}/{cmd}" {upload.verbose} -cd {upload.resetmethod}
-cb {upload.speed} -cp "{serial.port}" -ca 0x00000 -cf "{build.path}/
{build.project_name}.bin"

and change it to be:

tools.esptool.upload.pattern="{path}/{cmd}" -vv -cd {upload.resetmethod} -cb
{upload.speed} -cp "{serial.port}" -ca 0x00000 -cf "{build.path}/
{build.project_name}.bin"

(This is we change "{upload.verbose}" to "-vv")

Save the file.

We are now ready to build a use our environment.

From the main window, create a new "Sketch".

Note that we can also do this through the standard Eclipse > New Project

Page 243

The first page of the project creation wizard is the name we wish to give our project:

Next we supply some core settings. Take your time over these. The one that will likely
differ for you is the "Port:" which is the serial port used to flash your device:

Page 244

At the completion of the wizard (assuming you took the rest of the options as defaults)
… you will have a project that looks like:

Edit the Test1.ino C++ source file and add your code.

Page 245

Here you will see your pay-off. You are now editing your source in the professional
C/C++ editor that is part of Eclipse. This includes entry assist, syntax checking and
highlighting (and more).

Before you can compile your project, you need to change the project specific settings to
tell the project where to find your make program. In my environment I am using
"mingw32-make". You can see where to make the changes in the following screen shot.

Note: There has to be a better way than this … but I wanted to get this recipe out rather
than hold everyone up while I tinkered with this small nugget:

And finally, we can compile our program.

Click the "Verify" icon:

Page 246

Now the compilation will take place. For your first build of this project, all the source
code of all the libraries will be built. Future builds will just compile what has changed.
On my machine the build took 51 seconds:

However, when I now edit my project file (Test1.ino) and recompile, the re-build only
takes 4 seconds as only the files that have changed need to be recompiled.

Following a build, a new directory called "Release" can be found which contains all the
artifacts that were compiled. If you want to force a re-build of all, simply delete
"Release".

Page 247

Now that you have build the program, you can upload it with the upload icon:

This will upload the executable. Unfortunately, there isn't much to see while the upload
happens so sit back and be patient. If you have a USB → UART connector attached to
UART1 of the ESP8266, you will see the upload progress … but that is not essential
(though I recommend it).

And … that is it. You are now building ESP8266 applications using Arduino libraries in
an Eclipse environment.

If we wish to add one of the supplied libraries, we can select the library to include with:

Arduino > Add a library to the selected project

From there, we can select one of the libraries:

Page 248

We can add external libraries that exist a source files on the file system. From the
Arduino menu, select "Add a source folder to the selected project".

A dialog will be presented where one can select the directory to be included in the build.

Page 249

'

Once added it becomes a linked directory in the project and the contents of the directory
will be compiled and linked.

Note: The preceding recipe was based upon the Arduino IDE 1.6.5-r2, the stable
version of Arduino for ESP8266 as of 2015-07-23 and the 2015-08-05 build of Arduino
Eclipse.

See also:

• Github: esp8266/Arduino
• Arduino – Eclipse

Reasons to consider using Eclipse over Arduino IDE
As previously mentioned, there is no question that the Arduino IDE is much more
friendly and consumable that the professional Eclipse environment for folks new to the
area. There doesn't appear to be anything that one can't build using the Arduino IDE
that would mean one would have to switch to Eclipse. So why then would one ever
consider using Eclipse?

Page 250

http://eclipse.baeyens.it/
https://github.com/esp8266/Arduino

There is a trade-off between ease of use and richness of function. For example, Eclipse
has built in syntax assistance, error checking, code cross references, refactoring and
much more. None of these things are "essential" but any one of them can be
considered to make a programming job easier if and when needed. If I need to rename
a variable, in Arduino IDE I have to manually find and replace each occurrence. In
Eclipse, I can re-factor the variable using a built-in wizard and the IDE does the work for
me. As another example, if I can't remember the syntax for a method, in Arduino IDE I
would go to the web and look it up while in Eclipse I could type the name of the method
and hover my mouse over it and the tooling will show me the possible options for the
parameters.

Notes on using the Eclipse Arduino package
• Do not create Eclipse projects that have spaces in their names. This confuses

the compiler.

• If you are compiling on a multi-core machine, you can cause the compilations of
the source files to progress in parallel using by adding the "--jobs <num>"
parameter to your make command. This will cause make to execute some
number of jobs in parallel. For example, if you have a 4 core machine, setting num
to be 4 might be a good start. This flag works with the GNU make tool.

• At times we wish to write sketches that work on both a real Arduino and an
ESP8266 but the code has to be slightly different. We can include code for both
architectures by using the #defines called ARDUINO_ARCH_ESP8266 and/or ESP8266.

Page 251

Using these we can #if/#endif sections based on the architecture we are
compiling against.

• As of 2015-08-08, attempting to use native SDK function in the Arduino Eclipse
environment does not work if your source files are "*.ino". It appears that
"user_include.h" is included automatically with C++ function name mangling in
effect.

• I recommend renaming any "*.ino" files in your project to "*.cpp".

Arduino ESP Libraries

The WiFi library
The Arduino has a WiFi library for use with its WiFi shield. A library with a similar
interface has been supplied for the Arduino environment for the ESP8266.

To use the ESP8266 WiFi library you must include its header:

#include <ESP8266WiFi.h>

To be a station and connect to an access point, execute a call to WiFi.begin(ssid,
password). Now we need to to poll WiFi.status(). When this returns
WL_CONNECTED, then we are connected to the network.

To set up an access point, we would call WiFi.softAP() supplying the ssid and
password information.

Here is an example of us connecting as a station:

WiFi.mode(WIFI_STA);
WiFi.begin(SSID, PASSWORD);
if (WiFi.waitForConnectResult() != WL_CONNECTED) {

Serial1.println("Failed");
return;

}
WiFi.printDiag(Serial1);
// We are now connected as a station

See also:

• WiFiClient
• WiFiServer
• Arduino WiFi library

WiFi.begin
Start a WiFi connection as a station.

int begin(
const char *ssid,
const char *passPhrase=NULL,

Page 252

https://www.arduino.cc/en/Reference/WiFi

int32_t channel=0,
uint8_t bssid[6]=NULL)

int begin(
char *ssid,
char *passPhrase=NULL,
int32_t channel=0,
uint8_t bssid[6]=NULL)

Begin a WiFi connection as a station. The ssid parameter is mandatory but the others
can be left as default. The return value is our current connection status.

WiFi.beingSmartConfig
bool beginSmartConfig()

WiFi.beginWPSConfig
bool beginWPSConfig()

WiFi.BSSID
Retrieve the current BSSID.

uint8_t BSSID()
uint8_t *BSSID(uint8_t networkItem)

Retrieve the current BSSID.

WiFi.BSSIDstr
Retrieve the current BSSID as a string representation.

String BSSIDstr()
String BSSIDstr(uint8_t networkItem)

Retrieve the current BSSID as a string representation.

WiFi channel
Retrieve the current channel.

int32_t channel()
int32_t channel(uint8_t networkItem)

Retrieve the current channel.

WiFi.config
Set the WiFi connection configuration.

Page 253

void config(IPAddress local_ip, IPAddress gateway, IPAddress subnet)
void config(IPAddress local_ip, IPAddress gateway, IPAddress subnet, IPAddress dns)

Set the configuration of the WiFi using static parameters. This disables DHCP.

WiFi.disconnect
Disconnect from an access point.

int disconnect(bool wifiOff = false)

Disconnect from the current access point.

WiFi.encryptionType
Return the encryption type of the scanned WiFi access point.

uint8_t encryptionType(uint8_t networkItem)

Return the encryption type of the scanned WiFi access point.

The values are one of:

• ENC_TYPE_NONE

• ENC_TYPE_WEP

• ENC_TYPE_TKIP

• ENC_TYPE_CCMP

• ENC_TYPE_AUTO

WiFi.gatewayIP
Get the IP address of the station gateway.

IPAddress gatewayIP()

Retrieve the IP address of the station gateway.

WiFi.getNetworkInfo
Retrieve all the details of the specified scanned networkItem.

bool getNetworkInfo(uint8_t networkItem,
String &ssid,
uint8_t &encryptionType,
int32_t &RSSI,
uint8_t *&BSSID,
uint32_t &channel,
bool &isHidden)

Retrieve all the details of the specified scanned networkItem.

Page 254

WiFi.hostByName
Lookup a host by a name.

int hostByName(const char *hostName, IPAddress &result)

Look up a host by name and get its IP address. This function returns 1 on success and
0 on failure.

WiFi.hostname
Retrieve and set the hostname used by this station.

String hostname()
bool hostname(char *hostName)
bool hostname(const char *hostName)
bool hostname(String hostName)

WiFi.isHidden
Determine if the scanned network item is flagged as hidden.

bool isHiddem(uint8_t networkItem)

Determine if the scanned network item is flagged as hidden.

WiFi.localIP
Get the station IP address.

IPAddress localIP()

Get the IP address for the station. There is a separate IP address if the ESP is an
access point.

See also:

• WiFi.softAPIP

WiFi.macAddress
Get the station interface MAC address.

uint_t *macAddress(uint8_t *mac)
String macAddress()

Get the station interface MAC address.

WiFi.mode
Set the operating mode.

Page 255

void mode(WiFiMode mode)

Set the operating mode of the WiFi. This is one of:

• WIFI_OFF – Switch off WiFi

• WIFI_STA – Be a WiFi station

• WIFI_AP – Be a WiFi access point

• WIFI_AP_STA – Be both a WiFi station and a WiFi access point

See also:

• Defining the operating mode

WiFi.printDiag
Log the state of the WiFi connection.

void printDiag(Print &dest)

Log the state of the WiFi connection. We can pass in either Serial or Serial1 as an
argument to log the data to the Serial port. An example of output is as shown next:

Mode: STA
PHY mode: N
Channel: 7
AP id: 0
Status: 5
Auto connect: 0
SSID (7): yourSSID
Passphrase (8): yourPassword
BSSID set: 0

Note that the status value is the result of a wifi_station_get_connect_status() call.

See also:

• Error: Reference source not found

WiFi.RSSI
Retrieve the RSSI (Received Signal Strength Indicator) value of the scanned network
item.

int32_t RSSI(uint8_t networkItem)

Retrieve the RSSI value of the scanned network item.

WiFi.scanComplete
Determine the status of a previous scan request.

int8_t scanComplete()

Page 256

If the result is >= 0 then this is the number of WiFi access points found. Otherwise, the
value is less than 0 and the codes are:

• SCAN_RUNNING – A scan is currently in progress.

• SCAN_FAILD – A scan failed.

See also:

• WiFi.scanNetworks
• WiFi.scanDelete

WiFi.scanDelete
Delete the results from a previous scan.

void scanDelete()

Delete the results from a previous scan. A request to scan the network results in the
allocation of memory. This call releases that memory.

See also:

• WiFi.scanComplete
• WiFi.scanNetworks

WiFi.scanNetworks
Scan the access points in the environment.

int8_t scanNetworks(bool async = false)

Scan the access points in the environment. We can either perform this synchronous or
asynchronous. On a synchronous call, the result is the number of access points found.

See also:

• WiFi.scanComplete
• WiFi.scanDelete

WiFi.smartConfigDone
bool smartConfigDone()

WiFi.softAP
Setup an access point.

void softAP(const char *ssid)
void softAP(const char *ssid,

const char *passPhrase,
int channel=1,
int ssid_hidden=0)

Page 257

The ssid is used to advertize our network. The passPhrase is the password a station
must supply in order to be authorized to access.

WiFi.softAPConfig
void softAPConfig(IPAddress local_ip, IPAddress gateway, IPAddress subnet)

WiFi.softAPdisconnect
int softAPdisconnect(bool wifiOff=false)

WiFi.softAPmacAddress
Get the MAC address of the access point interface.

uint8_t *softAPmacAddress(uint8_t *mac)

Get the MAC address of the access point interface.

WiFi.softAPIP
Get the IP address of the access point interface.

IPAddress softAPIP()

Return the IP address of the access point interface. There is a separate IP for the
station.

See also:

• WiFi.localIP

WiFi.SSID
Retrieve the SSID.

char *SSID()
const char *SSID(uint8_t networkItem)

Here we retrieve the SSID of the current station or the SSID of the scanned network id.

WiFi.status
Retrieve the current WiFi status.

wl_status_t status()

The status returned will be one of:

• WL_IDLE_STATUS (0)

Page 258

• WL_NO_SSID_AVAIL (1)

• WL_SCAN_COMPLETED (2)

• WL_CONNECTED (3)

• WL_CONNECT_FAILED (4)

• WL_CONNECTION_LOST (5)

• WL_DISCONNECTED (6)

WiFi.stopSmartConfig
void stopSmartConfig()

WiFi.subnetMask
IPAddress subnetMask()

WiFi.waitForConnectResult
Wait until the WiFi connection has been formed or failed.

uint8_t waitForConnectResult()

If we are a station, then block waiting for us to become connected or failed. The return
code is the status. Specifically, this function watches the status to see when it becomes
something other than WL_DISCONNECTED. Perhaps a more positive form of this function
would be:

while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");

}

WiFiClient
This library provides TCP connections to a partner. A separate class provides UDP
communications.

To use this library, you must include "ESP8266WiFi.h".

We create an instance of this class and then connect to a partner using the connect()
method.

WiFiClient

WiFiClient.available
Return the amount of data available to be read.l15summe

Page 259

int available()

Return the amount of data available to be read.

WiFiClient.connect
Connect to the given host at the given port using TCP.

int connect(const char* host, uint16_t port)
int connect(IPAddress ip, uint16_t port)

Connect to the given host at the given port using TCP. This function returns 0 on a
failure.

WiFiClient.connected
Determine if we are connected to a partner.

uint8_t connected()

Return true if connected and false otherwise.

WiFiClient.flush
void flush()

WiFiClient.getNoDelay
bool getNoDelay()

WiFiClient.peek
int peek()

WiFiClient.read
Read data from the partner.

int read()
int read(uint8_t *buf, size_t size)

Read data from the partner. These functions read either a single byte or a sequence of
bytes from the partner.

WiFiClient.remoteIP
Retrieve the remote IP address of the connection.

Page 260

IPAddress remoteIP()

Retrieve the remote IP address of the connection.

WiFiClient.remotePort
Return the remote port being used in an existing connection.

uint16_t remotePort()

Return the remote port being used in an existing connection.

WiFiClient.setLocalPortStart
Set the initial port for allocating local ports for connections.

void setLocalPortStart(uint16_t port)

Set the initial port for allocating local ports for connections.

WiFiClient.setNoDelay
void setNoDelay(bool nodelay)

WiFiClient.status
uint8_t status()

WiFiClient.stop
Disconnect a client.

void stop()

Disconnect a client.

WiFiClient.stopAll
Stop all the connections formed by this WiFi client.

void stopAll()

WiFiClient.write
Write data to the partner.

size_t write(uint8_t b)
size_t write(const uint8_t *buf, size_t size)
size_t write(T& source, size_t unitSize);

Page 261

Write data to the partner. The first function writes one byte, while the second function
writes an array of characters.

WiFiServer

WiFiServer
Create an instance of a Server listening on the supplied port.

WiFiServer(uint16_t port)

Create an instance of a Server listening on the supplied port. Interesting, it appears that
once we crate a server instance within an ESP8266, there is no way to stop it running.

WiFiServer.available
Retrieve a WiFiClient object that can be used for communications.

WiFiClient available(byte* status)

Retrieve the corresponding WiFiClient.

See also:

• WiFiClient

WiFiServer.begin
Start listening for incoming connections.

void begin()

Start listening for incoming connections. Until this method is called, the ESP8266
doesn't accept incoming connections. Interestingly, once called, there is no obvious
way to stop listening. The port used for the incoming connections is the one supplied
when the WiFiServer object was constructed.

WiFiServer.getNoDelay

WiFiServer.hasClient
Return true if we have a client connected.

bool hasClient()

Page 262

WiFiServer.setNoDelay

WiFiServer.status

WiFiServer.write
WARNING!! This method is not implemented.

size_t write(uint8_t b)
size_t write(const uint8_t *buffer, size_t size)

Although present on the interface, this method is not yet implemented.

IPAddress
A representation of an IPAddress. This class has some operator overrides:

[i] – Get the ith byte of the address. I should be 0-3.

ESP8266WebServer
The ESP8266WebServer class provides the core implementation of an HTTP server.
This is software that responds to browser requests. To use this class we create an
instance of an ESP8266WebServer object specifying the TCP port number on which it
will listen. The default port for browsers is port 80 so this is a good choice.

Once the object has been created, we define one or more callback functions that will be
invoked when a browser connection is received. The function called on() is used to
register these. These callback functions are keyed on the URL path requested by the
browser. For example, if our ESP8266 is running at IP address 192.168.1.2 and the
browser URL is:

http://192.168.1.2/index.html

The the URL path will be "/index.html".

If we wish to send a response to a request at that URL, we would register a callback
function using that path as a key.

For example:

myServer.on("/index.html", myFunction);

where myFunction is a C function with the signature:

void myFunction()

The callback function, when called, can use the ESP8266WebServer object to execute
a send() method call to send a response.

Page 263

If a browser request arrives for a URL path that is not explicitly handled, a call to a
callback function registered with the onNotFound() method is invoked. This can serve
as a catch-all for processing.

When a URL contains query properties of the form "x=y", the number, names and values
of these properties are available in the args(), argName() and arg() functions. Note
that URL encoding is not currently supported so data can not yet contain URL invalid
characters.

When a request from a browser is received, one wants to send back a response and the
way to achieve that is through an invocation of the send() method. This takes the
response code to the browser (200 for OK), the MIME encoding type and the payload of
the data as parameters.

When you send a request from a browser to a Web server, anticipate an extra HTTP
GET request that wishes to retrieve a file called "/favicon.ico" which is used to specify
an icon that represents the web site being accessed. To handle this, we might wish to
add a handler function that looks as follows:

webServer.on("/favicon.ico", []() {
webServer.send(404, "text/plain", "");

});

This registers a handler for the icon file and sends back a 404 (not found) response to
the browser. Notice the use of an in-line anonymous function in C++. Your choice to
use this style of coding is your own. Personally, I prefer explicitly declared functions.

Here is an example of a Web server app:

#include <ESP8266WiFi.h>
#include <WiFiClient.h>
#include <ESP8266WebServer.h>

const char *ssid="mySsid";
const char *password="myPassword+";

ESP8266WebServer webServer(80);

void logDetails();

void testHandler() {
 Serial1.println("testHandler");
 logDetails();
 webServer.send(200, "text/plain", "Here is our response: " + String(millis()));
}

void notFoundHandler() {
 Serial1.println("Not Found Handler");
 logDetails();
}

Page 264

String methodToString(HTTPMethod method) {
 switch(method) {

 case HTTP_GET:
 return "GET";
 case HTTP_POST:
 return "POST";
 case HTTP_PUT:
 return "PUT";
 case HTTP_PATCH:
 return "PATCH";
 case HTTP_DELETE:
 return "DELETE";
 }
 return "Unknown";
}

void logDetails() {
 Serial1.println("URL is: " + webServer.uri());
 Serial1.println("HTTP Method on request was: " +
methodToString(webServer.method()));

 // Print how many properties we received and then print their names
 // and values.
 Serial1.println("Number of query properties: " + String(webServer.args()));
 int i;
 for (i=0; i<webServer.args(); i++) {
 Serial1.println(" - " + webServer.argName(i) + " = " + webServer.arg(i));
 }
}

void setup() {
 Serial1.begin(115200);
 Serial1.println("Starting ...");
 WiFi.begin(ssid, password);
 // Wait for connection
 while (WiFi.status() != WL_CONNECTED) {
 delay(500);
 Serial1.print(".");
 }
 Serial1.println("");
 Serial1.print("Connected to ");
 Serial1.println(ssid);
 Serial1.print("IP address: ");
 Serial1.println(WiFi.localIP());
 webServer.on("/test", testHandler);
 webServer.on("/favicon.ico", []() {
 webServer.send(404, "text/plain", "");
 });

 webServer.onNotFound(notFoundHandler);
 webServer.begin();
 Serial1.println("We have started the Web Server");
}

Page 265

void loop() {
 webServer.handleClient();
}

See also:

• Wikipedia: Favicon
• ESP8266WebServer.on
• ESP8266WebServer.send

ESP8266WebServer
Construct an instance of a WebServer object.

ESP8266WebServer::ESP8266WebServer(int port)

Construct an instance of the class. The port number supplied is the port that will be
listened upon for incoming browser requests.

ESP8266WebServer.arg
Retrieve the value of the argument.

String arg(int index)

For a property passed on a query string, here we can retrieve the corresponding value.

ESP8266WebServer.argName
Retrieve the name name of the argument.

String argName(int index)

For a property passed on a query string, here we can retrieve the corresponding name.

ESP8266WebServer.args
Retrieve the number of properties passed on a query string supplied with the browser
query.

int args()

ESP8266WebServer.begin
Start listening for incoming browser connections.

void begin()

ESP8266WebServer.client
WiFiClient client()

Page 266

https://en.wikipedia.org/wiki/Favicon

ESP8266WebServer.handleClient
Handle a client (browser) request.

void handleClient()

This is the function that is to be periodically called to process incoming browser
requests. For example, this is the function that is placed in the body of the loop().

ESP8266WebServer.hasArg
Return true if the named property was supplied.

bool hasArg(const char* name)

The name parameter is the name of the property that may have been supplied as a
property in a query string.

ESP8266WebServer.method
Retrieve the method supplied by the original browser request.

HTTPMethod method()

The HTTPMethod can be one of:

• HTTP_GET

• HTTP_POST

• HTTP_PUT

• HTTP_PATCH

• HTTP_DELETE

ESP8266WebServer.on
Register callbacks to process browser requests.

void on(const char *uri,
ESP8266WebServer::THandlerFunction handler)

void ESP8266WebServer::on(const char *uri,
HTTPMethod method,
ESP8266WebServer::THandlerFunction handler)

Register a callback function for a URI and method. The first variant of the function will
handle a matching URI for all methods while the second allows us to handle callbacks
for the same URI part but different HTTP methods.

The handler function has a signature of:

void (handler *)()

Page 267

ESP8266WebServer.onFileUpload

ESP8266WebServer.onNotFound
Register a callback when no specific handler otherwise exists.

void onNotFound(THandlerFunction fn)

If no callback has been explicitly registered for an incoming URL request, this callback
function will be invoked as a catch-all.

ESP8266WebServer.send
Send a response to the browser.

void send(int code, const char *contentType, const String &content)

Send data to the browser. This is the primary response entry point.

The code parameter is the HTTP response code. The code value of 200 means OK.
The contentType parameter is the MIME content of the payload. The content
parameter is the actual content to send.

ESP8266WebServer.sendContent
Send a string to the browser. This is a lower level interface and using the send()
method is the correct way to send app data.

void sendContent(const String &content)

Send a string to the browser. The string passed in content is used to transmit the data.

ESP8266WebServer.sendHeader
Send an HTTP header.

void sendHeader(const String& name, const String& value, bool first)

Add an HTTP header to the output stream sent to the browser. The name parameter is
the name of the header while value is the value of the header. The first parameter says
whether or not the header will be added at the front of the list of headers or at the end.

ESP8266WebServer.setContentLength
Set the length of the content to be sent.

void setContentLength(size_t contentLength)

Page 268

ESP8266WebServer.streamFile
Stream the content of a file.

size_t streamFile(T &file, const String &contentType)

ESP8266WebServer.upload
HTTPUpload& upload()

ESP8266WebServer.uri
Retrieve the current URI that was supplied by the browser.

String uri()

This is of primary value in a request callback handler where we can determine the
relative URI path.

ESP8266mDNS library
Advertise ourselves via Multicast DNS. The library called "ESP8266mDNS" must be added
to the project and the include called "ESP8266mDNS.h" must be included.

Examining this library, it appears to not use the ESP8266 SDK functions for mDNS.
That appears odd.

See also:

• Multicast Domain Name Systems

MDNS.addService
void addService(char *service, char *proto, uint16_t port);
void addService(const char *service, const char *proto, uint16_t port)
void addService(String service, String proto, uint16_t port)

MDNS.begin
Begin responding to mDNS requests.

bool begin(const char* hostName);
bool begin(const char* hostName, IPAddress ip, uint32_t ttl=120)

Note that the version of the function with more than the hostname is implemented by
ignoring the other parameters. The function returns true on success.

MDNS.update
void update();

Page 269

I2C – Wire
The Wire class provides I2C support. In order to use this class, import "Wire.h" into
your sketch. When we use this class, a global instance called "Wire" is made available
to us. One wire is called SCL which provides the clock while the other wire is called
SDA and is the data bus. On the Arduino, the library supports being either a master or a
slave however in the current implementation, only being a master is supported.

To use this class, first we define which pins should be used and then start the service.

Wire.begin(SDApin, SCLpin);

To send data, we begin a transmission using beginTransmission():

Wire.beginTransmission(deviceAddress);

now we can write some data …

Wire.write(value);

and finally complete the transmission:

Wire.endTransmission();

if we wish to receive data from the slave, we can call requestFrom():

Wire.requestFrom(deviceAdress, size, true);

and data can be read using the available() and read() functions.

See also:

• Working with I2C
• Arduino – Wire Library

Wire.available
Determine the number of bytes available to read.

int available(void)

Determine the number of bytes available to read.

See also:

• Wire.read
• Wire.requestFrom

Wire.begin
Initialize the wire library.

void begin(int SDApin, int SCLpin)
void begin()
void begin(uint8_t address)
void begin(int address)

Page 270

https://www.arduino.cc/en/reference/wire

Initialize the wire library. When an address is supplied, we are a slave otherwise we are
a master. We can also specify the pins to be used for SDA and SCL. If we are a
master and no pins are supplied, we will use the default pins.

WARNING!! – It appears that there is NO support for actually being a slave and only a
master is supported at this time.

WARNING!! – In the current code, the address parameter is ignored!!

See also:

• Wire.pins

Wire.beginTransmission
Beging a transmission block to a slave.

void beginTransmission(uint8_t address)
void beginTransmission(int address)

Begin the notion of sending a transmission to a slave device with the supplied address.
Further calls to write() will queue data to be transmitted which is finally executed with a
call to endTransmission().

Wire.endTransmission
End the bracketing of a transmission.

uint8_t endTransmission(void) // Defaults to sendStop = true
uint8_t endTransmission(uint8_t sendStop)

End the bracketing of a transmission and perform the actual transmit. The return codes
are:

• 0 – Transmitted correctly

• 2 – Received NACK on transmit of address

• 3 – Received NACK on transmit of data

• 4 – line busy

Wire.flush
Discard any un-read or un-written data.

void TwoWire::flush(void)

Discard any un-read or un-written data. A call to available() will return 0 and a call to
endTransmission() will transmit no data.

Page 271

Wire.onReceive
A callback when we are in the role of a slave and receive a transmission from a master.

void onReceive(void (*function)(int numBytes))

A callback when slave receives a transmission from a master.

WARNING!! – This function is not implemented.

Wire.onReceiveService
Not implemented.

void onReceiveService(uint8_t* inBytes, int numBytes)

Not implemented.

WARNING!! – This function is not implemented.

Wire.onRequest
A callback invoked when we are in the role of a slave and a master requests data from
us.

void onRequest(void (*function)(void))

A callback invoked when we are in the role of a slave and a master requests data from
us.

WARNING!! – This function is not implemented.

Wire.onRequestService
Not implemented.

void onRequestService(void)

Not implemented.

WARNING!! – This function is not implemented.

Wire.peek
Peek at the next byte.

int peek(void)

Peek at the next byte if one is available. A return of -1 if there is no byte available.

Page 272

Wire.pins
WARNING!! - This function has been deprecated in favor of begin(sda, scl).

Define the default pins for SDA and SCL.

void pins(int sda, int scl)

Define the default pins for SDA and SCL.

See also:

• Wire.begin

Wire.read
Read a single byte.

int read(void)

Read a single byte from the bus. A value of -1 is returned if there is no byte available.

See also:

• Wire.available
• Wire.requestFrom

Wire.requestFrom
Request data from a slave.

size_t requestFrom(uint8_t address, size_t size, bool sendStop)
uint8_t requestFrom(uint8_t address, uint8_t quantity, uint8_t sendStop)
uint8_t requestFrom(uint8_t address, uint8_t quantity)
uint8_t requestFrom(int address, int quantity)
uint8_t requestFrom(int address, int quantity, int sendStop)

Request data from a slave. This method should be called when we are playing the role
of a master. The address parameter defines the slave address for the device that
should respond. If the sendStop is true, a stop message is transmitted releasing the I2C
bus. If sendStop is false, a restart message is transmitted preventing another bus
master from taking control.

The quantity parameter states how many bytes we wish to receive.

The return value is the number of bytes that were received.

See also:

• Wire.read
• Wire.available

Wire.setClock
Set the clock frequency.

void setClock(uint32_t frequency)

Page 273

Set the clock frequency. Always call setClock() AFTER a call to begin().

Wire.write
Write one or more bytes to the slave.

size_t write(uint8_t data)
size_t write(const uint8_t *data, size_t quantity)

Write one or more bytes to the slave.

Ticker library
This library sets up callback functions that are called after a period of time. To use this
library you must include "Ticker.h". For example:

#include <Ticker.h>

void timerCB() {
Serial1.println("Tick ...");

}

void setup()
{

Serial1.begin(115200);
ticker.attach(5, timerCB);
Serial1.println("Ticker attached");

}

Ticker
An instance of a Ticker object. Commonly this is created as a global such as:

Ticker myTicker;

attach
Attach a callback function to the ticker.

void attach(float seconds,
callback_t callback)

void attach(float seconds,
void (*callback)(TArg),
TArg arg)

Attach a callback function to the ticker such that the callback is invoked each period of
seconds. Note that seconds is a float so we can specify values such as 0.1 to indicate
a callback every 1/10th of a second (100 milliseconds).

The callback_t is a defined as:

void (*callback_t)(void)

Page 274

attach_ms
Attach a callback function to the ticker.

void attach_ms(uint32_t milliseconds,
callback_t callback)

void attach_ms(uint32_t milliseconds,
void (*callback)(TArg), TArg arg)

Attach a callback function to the ticker such that the callback is invoked each period of
milliseconds. Only one attachment can be made to a timer.

detach
Detach a ticker from the timer.

void detach()

Detach a callback function from the timer. No further callbacks will occur.

once
Attach a callback function to the timer for a one-shot firing.

void once(float seconds,
callback_t callback)

void once(float seconds,
void (*callback)(TArg),
TArg arg)

Attach a callback function to the timer for a one-shot firing. Note that seconds is a float
so we can specify values such as 0.1 to indicate a callback every 1/10th of a second
(100 milliseconds).

once_ms
Attach a callback function to the timer for a one-shot firing.

void once_ms(uint32_t milliseconds,
callback_t callback)

void once_ms(uint32_t milliseconds,
void (*callback)(TArg),
TArg arg)

Attach a callback function to the timer for a one-shot firing.

EEPROM library
This library allows us to store and retrieve data from storage that persists across a
device restart. A singleton object called EEPROM is pre-supplied for use.

Page 275

EEPROM.begin
Begin the process of writing or reading from EEPROM. The size is the amount of
storage we wish to work with.

void begin(size_t size)

EEPROM.commit
The changes to the data are committed to EEPROM. A return of true indicates success
while a return of false indicates a failure.

bool commit()

EEPROM.end
Commits the changes to the data and then releases any local storage. No further reads
or writes should be attempted until after the next begin() call.

void end()

EEPROM.get
Read a data structure from storage.

T &get(int address, T &t)

EEPROM.getDataPtr
Retrieve a pointer to the storage we are going to read or write.

uint8_t *getDataPtr()

EEPROM.put
Put a data structure to storage.

const T &put(int address, const T &t)

EEPROM.read
Read a byte from storage.

uint8_t read(int address)

EEPROM.write
Write a byte to storage.

void write(int address, uint8_t value)

Page 276

SPIFFS
FS is the File System library which provides the ability to read and write files from within
the Arduino ESP environment. But wait … read and write files to where? There are no
"drives" on an ESP8266. The data for the files is read and written to an area of flash
memory and since flash is relatively small in size (4MBytes or so max) then that is an
upper bound of maximum size of the cumulative files … however, this is still more than
enough for many usage patterns such as saving state, logs or configuration information.

SPIFFS.begin
Begin working with the SPIFFS file system.

bool begin()

Returns true of success and false otherwise.

SPIFFS.open
Open the named file.

File open(const char *path, const char *mode)
File open(const String &path, const char *mode)

The mode defines how we wish to access the file. The options are:

• r – Read the file. The file must exist.

• w – Write to the file. Truncate the file if it exists.

• a – Append to the file.

• r+ – Read and write the file.

• w+ – Read and write the file.

• a+ – Read and write the file.

See also:

• File.close

SPIFFS.openDir
Open a directory.

Dir openDir(const char *path)
Dir openDir(const String &path)

SPIFFS.remove
Remove/delete a file from the file system.

Page 277

bool remove(const char *path)
bool remove(const String &path)

SPIFFS.rename
Rename a file.

bool rename(const char *pathFrom, const char *pathTo)
bool rename(const String &pathFrom, const String &pathTo)

File.available
Return the number of bytes that are available within the file from the current file position
to its maximum size.

int available()

File.close
Close a previously opened file.

void close()

No further reading nor writing should be attempted to be performed.

File.flush
Flush the file.

void flush()

File.name
Retrieve the name of the file.

const char *name()

File.peek
Peek at the next byte of data in the file without consuming it.

int peek()

File.position
Retrieve the current file pointer position.

size_t position()

Page 278

File.read
Read data from the file.

int read()
size_t read(uint8_t *buf, size_t size)

Read either a single byte of data or a buffer of data from the file.

File.seek
Change the current file pointer position.

bool seek(uint32_t pos, SeekMode mode)

The mode can be one of:

• SeekSet – Change the file pointer position to the absolute value.

• SeekCur – Change the file pointer position to be relative to the current position.

• SeekEnd – Change the file pointer position to be relative to the end of the file.

File.size
Retrieve the maximum size of the file.

size_t size()

File.write
Write data to the file.

size_t write(uint8_t c)
size_t write(uint8_t *buf, size_t size)

Write either a single byte or a buffer of bytes into the file at the current file pointer
position.

Dir.fileName
Retrieve the name of the file.

String fileName()

Dir.next
bool next()

Dir.open
File open(const char *mode)
File open(String &path, const char *mode)

Page 279

Dir.openDir
Dir openDir(const char *path)
Dir openDir(String &path)

Dir.remove

Dir.rename

ESP library
A class has been provided called ESP that provides ESP8266 environment specific
functions. You must realize that using these functions will result in your applications not
being portable to the Arduino (if that is a desire).

ESP.deepSleep
void deepSleep(uint32_t time_us, WakeMode mode)

ESP.eraseConfig
bool eraseConfig()

ESP.getBootMode
uint8_t getBootMode()

ESP.getBootVersion
uint8_t getBootVersion()

ESP.getChipId
uint32_t getChipId()

ESP.getCpuFreqMHz
uint8_t getCpuFreqMHz()

ESP.getCycleCount
uint32_t getCycleCount()

ESP.getFlashChipId
uint32_t getFlashChipId()

Page 280

ESP.getFlashChipMode
FlashMode_t getFlashChipMode()

ESP.getFlashChipRealSize
uint32_t getFlashChipRealSize()

ESP.getFlashChipSize
uint32_t getFlashChipSize()

ESP.getFlashChipSizeByChipId
uint32_t getFlashChipSizeByChipId()

ESP.getFlashChipSpeed
uint32_t getFlashChipSpeed()

ESP.getFreeHeap
uint32_t getFreeHeap()

ESP.getFreeSketchSpace
uint32_t getFreeSketchSpace()

ESP.getResetInfo
String getResetInfo()

ESP.getResetInfoPtr
struct rst_info * getResetInfoPtr()

ESP.getSdkVersion
Retrieve the string representation of the SDK being used.

const char *getSdkVersion()

Page 281

ESP.getSketchSize
uint32_t getSketchSize()

ESP.getVcc
uint16_t getVcc()

ESP.reset
void EspClass::reset()

ESP.restart
void EspClass::restart()

ESP.updateSketch
bool updateSketch(Stream& in,
uint32_t size,
bool restartOnFail,
bool restartOnSuccess)

ESP.wdtDisable
void wdtDisable()

ESP.wdtEnable
void wdtEnable(uint32_t timeout_ms)

ESP.wdtFeed
void wdtFeed()

Page 282

String library
Although it is believed that this library may be identical to the Arduino String library, I
believe it is so essential to understand that I am going to list the methods again.

String

Constructor
String(const char *cstr = "");
String(const String &str)
String(char c)
String(unsigned char, unsigned char base = 10)
String(int, unsigned char base = 10)
String(long, unsigned char base = 10)
String(unsigned long, unsigned char base = 10)
String(float, unsigned char decimalPlaces = 2)
String(double, unsigned char decimalPlaces = 2)

Create an instance of the String class seeded with various data type initializers.

String.c_str
Retrieve a C string representation.

const char *c_str()

String.reserve
unsigned char reserve(unsigned int size)

String.length
Return the length of the string.

unsigned int length()

Return the length of the string.

String.concat
unsigned char concat(const String &str)
unsigned char concat(const char *cstr)
unsigned char concat(char c)
unsigned char concat(unsigned char c)
unsigned char concat(int num)
unsigned char concat(unsigned int num)
unsigned char concat(long num)
unsigned char concat(unsigned long num)
unsigned char concat(float num)
unsigned char concat(double num)

String.equalsIgnoreCase
unsigned char equalsIgnoreCase(const String &s) const;

String.startsWith
Determine whether or not this string starts with another string.

Page 283

unsigned char startsWith(const String &prefix)
unsigned char startsWith(const String &prefix, unsigned int offset)

String.endsWith
unsigned char endsWith(const String &suffix)

String.charAt
char charAt(unsigned int index)

String.setCharAt
void setCharAt(unsigned int index, char c)

String.getBytes
void getBytes(unsigned char *buf, unsigned int bufsize, unsigned int index = 0)

String toCharArray
void toCharArray(char *buf, unsigned int bufsize, unsigned int index = 0)

String.indexOf
Find the position of a string or character within the current string.

int indexOf(char ch)
int indexOf(char ch, unsigned int fromIndex)
int indexOf(const String &str)
int indexOf(const String &str, unsigned int fromIndex)

Find the position of a string or character within the current string. If the match is not
found, -1 is returned otherwise the position of the start of the match is returned.

String.lastIndexOf
int lastIndexOf(char ch)
int lastIndexOf(char ch, unsigned int fromIndex)
int lastIndexOf(const String &str)
int lastIndexOf(const String &str, unsigned int fromIndex)

String.substring
Retrieve a substring from within the current string.

String substring(unsigned int beginIndex)
String substring(unsigned int beginIndex, unsigned int endIndex)

Retrieve a substring from within the current string.

String.replace
void replace(char find, char replace)
void replace(const String& find, const String& replace)

String.remove
void remove(unsigned int index)
void remove(unsigned int index, unsigned int count)

String.toLowerCase
void toLowerCase(void)

String.toUpperCase
void toUpperCase(void)

Page 284

String.trim
void trim(void)

String.toInt
long toInt(void)

String.toFloat
float toFloat(void)

Programming with JavaScript
The JavaScript is a high level interpreted language. Some of its core constructs are
loose typing, object oriented, support of lambda functions, support of closures and, most
importantly, has become the language of the web. If one is writing a browser hosted
application, then it is a certainty that it will be written in JavaScript. But what of non-
browser environments? For a while now JavaScript has been eating into server side
code through projects such as Node.js. As a language for running server code, it has a
significant set of features to realize this capability. Specifically, it supports an event
driven architecture paradigm. In JavaScript, we can register functions to be called back
upon events being detected. These callbacks can be defined as simple in-line functions
on what to do. In these made up examples, we illustrate this:

httpServer.on("/path1", function() {
// Do something for /path1
httpServer.send(response);

});

or

socket.accept(port, function(newSocket) {
newSocket.on("receive", function(data) {

print("We received new data: " + data);
newSocket.send("We got the data", function() {

newSocket.close();
});

});
});

And if we can implement a good JavaScript model, it maps excellently to the ESP8266
model of the world which is itself event driven via callbacks. This mapping won't be
easy … but plans are afoot.

Espruino is an open source project to provide a JavaScript run-time for embedded
devices. It has been implemented for the ARM Cortex M3/M4 processors and others.

The question now is … can it be used for the ESP8266? An active project is attempting
to do just that.

See also:

• Espruino

Page 285

http://www.espruino.com/

Smart.js
Smart.js is an implementation of JavaScript for a variety of embedded platforms. It
provides native support for most of the common I/O functions including GPIO, SPI, I2C,
PWM. It has networking support through WiFi and HTTP server. It supports a file
system.

Page 286

To configure WiFi, run:

wifi.setup(ssid, password)

To list files … run File.list('.')

To determine which version, run version

See also:

• Github: cesanta/smart.js

• Smart.js home page

• Smart.js Developer Centre

Smart.js GPIO
Smart.js has some sophisticated GPIO capabilities. Before reading or writing from a
pin, we must first declare the mode of access. We can do this with GPIO.setmode(pin,
mode, pullup). The pin parameter is the pin we are defining, mode is the I/O mode
which is encoded as:

• 0 – Input and output

• 1 – Input

Page 287

https://www.cesanta.com/developer/smartjs
https://smartjs.io/
https://github.com/cesanta/smart.js

• 2 – Output

• 3 – Interrupts

The pullup parameter defines any pullup characteristics:

• 0 – floating

• 1 – pull-up

• 2 – pull-down

Once the mode has been set, we can read from a pin via GPIO.read(pin) or write to a
pin with GPIO.write(pin, value).

If we wish to use interrupts, we can register a function to be called when a value of a pin
changes. This is set with GPIO.setisr(pin, type, function). The type parameter is
an encoding of the type of signal change that will trigger the interrupt.

• 0 – Interrupts disabled

• 1 – Positive edge

• 2 – Negative edge

• 3 – Any edge

• 4 – Low

• 5 – High

• 6 – Button

The function that is called has the signature function(pin,level).

Related to GPIO is the notion of PWM. We can define a PWM using PWM.set(pin,
period, duty). Both the period and duty are supplied in microseconds.

Setting up an HTTP server
Smart.js provides an implementation of an Http server. A pre-supplied class called
"Http" is available. First we create an instance of an Http server using the
createServer() method.

var httpServ = Http.createServer(function(req, req) {});

The creation of a server does not immediately start it listening, instead the listen()
method on the Http server should be called.

httpServ.listen(80);

When a browser connects to the server the function will be called with parameters of
both a request and response object.

Page 288

The request object contains the following properties:

• url – The relative URL part of the request

The response object contains the following methods:

• writeHead(status, headers)

• write(data)

• end()

Debugging
When running Smart.js JavaScript programs, we may wish to do some debugging. We
can perform logging using print() or Debug.print().

From a memory and other resources standpoint, the command GC.stat() returns an
object that contains details about the available resources. This includes:

• owned_max

• owned

• astsize

• funcncell

• funcnfree

• propncell

• propnfree

• objncell

• objfree

• struse

• strres

• jsfree

• jssize

• sysfree

•

Espruino
Espruino is an open source implementation of JavaScript that runs on a variety of
platforms including the ESP8266. The web page for ESP8266 support can be found
here:

Page 289

http://www.espruino.com/EspruinoESP8266

A build of Espruino for the ESP8266 is available as part of the master set of builds
available here:

http://www.espruino.com/Download

Editing and deploying code
Espruino has an elegant code editor and deployment tool that is based on Chrome. It
allows us to write our JavaScript and load it into the Espruino run-time. We can also
use the dump() method to ask Espruino what it has installed as a program. This can be
copied back to an editor.

Not only is the Espruino web editor available for execution in Chrome, it is available as
an application that can be locally installed. Assuming you have a local copy of Node.js
installed, we can run:

$ sudo npm install -g espruino-web-ide
$ espruino-web-ide

This will launch a local copy of the development tools.

Working with variables
An object called "global" can be used to list the global data in scope.

Booting Espruino
When Espruino boots, it will continue from where it was in the code when "save()" was
executed. The effect of running "save()" is to cause the state of the program to be
written to flash and then loaded on next boot. If we need to perform initialization upon
boot, we use the E.on() init event handler. For example:

E.on("init", function() {
 // Code here ...
});

A method called "reset()" will reset the state of Espruino without performing a
hardware reset.

WiFi access
A module called "Wifi" contains the majority of WiFi access functions. To use this we
bring in the module with:

var wifi = require("Wifi");

Page 290

http://www.espruino.com/Download
http://www.espruino.com/EspruinoESP8266

To start listening as an access point, we can use the startAP() method. For example:

var wifi = require("Wifi");
wifi.startAP("ESP8266", {
 "authMode": "open"
}, function(err) {
 console.log("AP now started: " + err);
});

We can interrogate the status of the Access Point using getAPDetails(). For example:

wifi.getAPDetails(function(data) {
 // process data
});

The structure returned might look like:

{
 "status": "enabled",
 "authMode": "open",
 "hidden": false, "maxConn": 4,
 "ssid": "ESP8266",
 "password": "",
 "savedSsid": null,
 "stations": [
 {
 "ip": "192.168.4.2",
 "mac": "00:36:76:21:97:a3"
 }
]
 }

Note that "stations" is an array of stations that are connected to the access point.

If we want to know the IP address of the access point we can call wifi.getAPIP(). For
example:

wifi.getAPIP(function(data) {
 console.log(data);
});

An example of what might be returned would be:

{
 "ip": "192.168.4.1",
 "netmask": "255.255.255.0",
 "gw": "192.168.4.1",
 "mac": "1a:fe:34:f5:2e:ec"
 }

Writing network socket applications using Espruino
The network library provided by the Espruino environment can be accessed using:

var net = require("net")

This returns a network object that exposes operations necessary to interact with the
network. The methods exposed by this object include:

Page 291

• createServer – Create a server instance

• connect – Connect to a partner

net.connect("http://1.2.3.4:80", function(connection) {
// Connection is a connection object to a partner.

});

The connection object (which is called a "Socket" by Espruino) is always a reference to
a specific connection between the ESP8266 and a partner over the network. The
connection object has the following methods:

• available – The number of bytes available to read. This will always return 0 if a
data listener has been registered.

• read – Read some number of bytes.

• write – Write some number of bytes.

• end – Terminate the connection.

• on("data") – Register a callback to be invoked when data becomes
available.Writing network HTTP applications using Espruino

Writing a REST client using Espruino
A REST client is one which sends REST requests which are basically HTTP requests.
At a high level, the following example illustrates how to achieve this:

var http = require("http");
var getRequest = http.get({
 host: "192.168.1.9",
 port: 1817,
 path: "/sendmessage?message=1"
 }, function(response) {
 // Handle response here
 }
);

There are two key parameters to the get() method. The first is an options JavaScript
object that configure the details of the REST request. This object includes:

• host – The IP address of the target of the REST request

• port – The port number to which the request will be sent

• path – The relative URL part

• method – Unknown

• headers – JavaScript object representing the headers to send.

Page 292

The second parameter is a callback function that will be invoked when the response to
the REST request is received. The callback function has the signature:

callback(response)

where response is an instance of the Espruino HTTPCRS object. This object has the
following methods:

• available – Return the number of available bytes for reading.

• event close – Called when the connection is closed.

• event data – Called when there is data available.

• pipe – Do something with a pipe.

• read – Read available data.

In addition, the response object has a property called headers which are the HTTP
response headers returned from the server. These will include the usual HTTP
properties which may include:

• Content-Type

• Date

• Connection

• Content-Length

The return from the http.get() function call is an object of type HTTPCRQ.

Writing a Web Server using Espruino
We can also set our environment up to be a Web Server that can process incoming
HTTP client requests. To do this we need to access the http class using
require("http"). This class has a method on it to create an instance of a Web Server.
The method has the signature:

createServer(handlerFunction)

The handler callback function is invoked when each new client request arrives. In the
majority of cases the client will be a browser but it could just as easily be another
application making REST request. The callback handler takes two parameters as input.
The first is an object representing the request (httpSRq) and the second an object
representing the response (httpSRs)

The createServer method returns an instance of an HTTP server object (httpSrv). We
can then start that HTTP server listening with a call to listen() which takes the port
number the server should listen upon.

Page 293

For example:

var http = require("http");

var httpServer = http.createServer(function(request, response) { … });
httpServer.listen(80);

Once the server starts listening, incoming HTTP requests will cause the handler
function to be invoked passing in an object representing the request and an object that
can be used to formulate the response.

The request object passed to the callback function has the following properties:

• url – The local path of the incoming request.

• method – The HTTP method of the incoming request.

• headers – The headers contained in the data.

Since the url parameter can be made up of query options, it might be nice to be able to
extract those. Here is a fragment that will do just that:

var partsOfUrl = request.url.split("?");
if (partsOfUrl.length > 1) {
 var options = partsOfUrl[1].split('&');
 var optionsObj = {};
 for (var i=0; i<options.length; i++) {
 var splitEquals = options[i].split('=');
 optionsObj[splitEquals[0]] = splitEquals[1];
 }
 print("Final obj: " + JSON.stringify(optionsObj));
}

If the incoming request is an HTTP POST or PUT command, we can have optional
payload data sent as part of the request from the client. We access that data by
registering a data event callback on the request object:

request.on("data", function(receivedData) {
 // Process data
});

Let us pause here for a moment to consider what is happening. Data is arriving from
the caller as a stream TCP socket. This means that the data will arrive in order but not
necessarily all once. If the client wishes to send in 100 bytes of payload data in the
request, we may receive all 100 bytes as a single chunk or we might just as easily
receive 100 callbacks of 1 byte each. As such, it is our responsibility to ensure that we
have received all the data we need before processing. If we follow this notion, we will
also realize that the request.available() and request.read() methods should be
understood properly. Calling request.available() tells us what data has been received
so far … and does not indicate how much actual data may be eventually received.
Similarly, the request.read() method returns data that has been received but does not
block waiting for new/additional data to arrive.

Page 294

An event is made available to determine when the client has sent all the required data.
This is through the request.on("close", function() …) mechanism. We can register
a close callback handler to be informed when the client has closed the connection. At
this point, we can read all the data through available() and read() because we know
there will be no further data arriving.

To return a response, we can invoke the writeHead(statusCode, headers) method to
set a status code and headers for the return. To write content in the response we can
use:

response.write(data);

To test, we need to send an HTTP request. Assuming we are not testing with a
browser, we can use:

wget http://<IP address> --quiet --output-document=-

The --quiet flag switches off app chatter while --output-document writes the received
data to stdout.

To send a request containing data, we can use:

wget http://<IP address> --post-data "<some data> --quiet –output-document=-

Working with GPIO
Espruino provides GPIO support through a number of global methods. These include
"pinMode()" to set the mode of a pin, "getPinMode()" to get the mode of a pin,
"digitalWrite()" to set the logic level, "digitalRead()" to get the logic level,
"digitalPulse()" to pulse a logic level.

Working with I2C and JavaScript
The software I2C mechanism is available from the I2C class which is a built-in. To use,
we can leverage an instance of an I2C object. Espruino pre-creates one called I2C1.
From there, we can use the setup() method upon it. The setup() method takes an
object as input which has properties of:

• scl – The pin to be used for a clock (default is 14)

• sda – The pin to be used for SDA (default is 2)

• bitrate – The bitrate of communication (default is 50000)

To write to the I2C device, we can invoke the writeTo() method. This has the
signature:

writeTo(address, data, …)

Where address is the address of the I2C slave device and data is the data to transmit.

Page 295

To read data, we can use the readFrom() method. This has the signature:

readFrom(address, quantity)

Where address is the address of the I2C slave device and quantity is the number of
bytes to read. The result is an array of bytes.

Convenience constants are available called "HIGH" and "LOW".

See also:

• Working with I2C

Debugging JavaScript
There are a number of ways we can debug the JavaScript code.

The first is through the dump() statement. This will log the current interpreter state.

The trace() statement can be used to dump the variables including their types. It can
take a variable name.

The global variable is a scope qualifier. Using global["\xFF"] will access the Espruino
"hidden" variables.

Editing JavaScript
Personally, I prefer to use the Eclipse programming environment for all my work. We
can install the JavaScript development tools to provide us a nice JavaScript editor. This
can be installed through the normal Eclipse plug-in installation mechanisms. Simply
search for JavaScript in the installable components. Once installed and editing the
script, you get all kinds of JavaScript language support including entry assist and a
program outline:

Page 296

Espruino ESP8266 Libraries
There is an ESP8266 specific library than can be accessed from the require statement
that looks like:

var esp8266 = require("ESP8266");

There are a number of methods exposed on the returned object including:

• crc32 – Create a 32 bit CRC.

• deepSleep – Make the ESP8266 enter "deep sleep" mode. Effectively a timed
reboot.

• dumpSocketInfo – Debug socket information by writing it to the log.

• getFreeFlash – Return the amount of free flash storage. Deprecated.

• getResetInfo – Retrieve the reason for the last reset/reboot.

• getState – Retrieve the state of the device

◦ sdkVersion – Version of SDK

◦ cpuFrequency – MHZ of CPU speed

◦ freeHeap – Amount of free heap storage

◦ maxCon – Maximum number of connections

◦ flashMap – How flash is mapped

◦ flashKB – Configured flash size

◦ flashChip – Manufacturer of flash chip

Page 297

here is an example of output:

{
 "sdkVersion": "1.5.0",
 "cpuFrequency": 160, "freeHeap": 10096, "maxCon": 10,
 "flashMap": "4MB:512/512",
 "flashKB": 4096,
 "flashChip": "0xe0 0x4016"
 }

• logDebug – Enable or disable debug logging.

• neopixelWrite – Write to a string of NeoPixels.

• ping – Ping the given IP address.

• printLog – Print the debug log to the console.

• readLog

• reboot – Reboot the device.

• setCPUFreq – Set the CPU frequency. Deprecated.

• setLog – Set the log mode

◦ 0 – off

◦ 1 – in memory

◦ 2 – in memory and UART0

◦ 3 – in memory and UART1

Core JavaScript capabilities
The JavaScript language provided by Espruino is covered in detail by the Espruino
documentation. However, here are some of the core nuggets that I find extremely
useful.

See also:

• Espruino software reference

Running code at intervals
We can define a timer that will fire either once (setTimeout()) or periodically
(setInterval()) and call a function.

The syntax for this is:

setTimeout(function, delay, [args, …])
setInterval(function, period, [args, …])

Page 298

Where delay and period are times measured in milliseconds. Optional arguments can
also be supplied which are passed to the function. Both these functions return an id
value that can be used to cancel the request before it happens. The function to do this
is called clearInterval().

clearInterval(id)

We can also change the interval on a periodic callback with the changeInterval()
function.

changeInterval(id, newPeriod)

Working with GPIO
We can define an object of type Pin to represent a GPIO pin and then either set its
value or read its value. For example, here is a simple blinky:

var ledOn = false;
var ledPin = new Pin(4);
setInterval(function() {

digitalWrite(ledPin, ledOn);
ledOn = !ledOn;

}, 1000);

SPI
SPI is a wire protocol used to drive SPI compliant interface components. Espruino has
a module called SPI that provides us access to those capabilities. First we create an
SPI port using:

var mySPI = new SPI();

Next we can configure this port using the setup() function. The parameter to setup is
an object which contains:

• sck – The Pin to use for the clock.

• miso – The pin to use for master in/slave out.

• mosi – The pin to use for master out/slave in.

• baud (optional) – Defaults to 100000.

• mode (optional) – Defaults to 0.

• order (optional) – Defaults to "msb".

Finally, we can call the write() function to write data. Alternatively we can call send().

Page 299

Here is an example. The MAX7219 is a powerful little IC that is able to drive an 8x8
matrix of LEDs. Being an SPI device, it uses three SPI signals:

• CS – Low to select the MAX7219 for SPI communication.

• MOSI – The data line over which serial data will flow.

• CLK – The clock line controlling reception of new bits of data.

If we look at an ESP8266, we might choose to map these to the following ESP8266
pins:

Function Pin NodeMCU Color

CS GPIO 12 D6

MOSI GPIO 13 D7

CLK GPIO 14 D5

Key differences from JavaScript
Although Espruino is an excellent implementation, it does have some distinctions from a
ECMAScript standards. Some things are subtle and unlikely to be stumbled across
while others are bigger. Here are some examples:

• Calling functions before their declaration are not supported.

• Declaring a variable as const doesn't make it so.

Building Espruino
To build Espruino from the source tree:

$ git clone https://github.com/espruino/Espruino.git
$ cd Espruino
$ export ESP8266_BOARD=1
$ export FLASH_4MB=1
$ export ESP8266_SDK_ROOT=/esp8266/sdk/ESP8266_NONOS_SDK
$ export PATH=$PATH:/pot/xtensa-lx106-elf/bin
$ export ESPHOSTNAME=espruino:88

Create the SDK dir:

$ wget
http://espressif.com/sites/default/files/sdks/esp8266_nonos_sdk_v2.0.0_16_08_10.zip
$ wget
http://espressif.com/sites/default/files/sdks/esp8266_nonos_sdk_v2.0.0_patch_16_08_09.
zip
$ mkdir src
$ unzip esp8266_nonos_sdk_v2.0.0_16_08_10.zip -d sdk
$ unzip esp8266_nonos_sdk_v2.0.0_patch_16_08_09.zip -d sdk/ESP8266_NONOS_SDK/lib

Page 300

https://github.com/espruino/Espruino.git

Programming with Lua
Lua is a powerful scripting language that is available on ESP8266 environments. The
most popular implementation of Lua for the ESP8266 is known as the NodeMCU Lua
firmware and is available at its github repository. Some folks interchange the phrase
NodeMCU for the Lua firmware itself so take care to make sure that you understand the
context involved.

Builds of the firmware can be downloaded directly as can the source.

Once you have a copy of the firmware you can flash it using your favorite flash tools.

We won't be describing the Lua language itself in this book. There are excellent books
already written on Lua and also references and tutorials can be found on the Internet.
Rather, let us look at the specifics of running Lua on an ESP8266.

Assuming you have flashed an ESP8266 with Lua, you will need to connect a serial
terminal to it in order to interact with it. The serial baud rate should be 9600.

See also:

• Github: nodemcu/nodemcu-firmware
• NodeMCU firmware Wiki
• Lua 5.1 Reference Manual
• lua.org
• NodeMCU ua Forum on ESP8266.com
• nodemcu-unofficial-faq

ESPlorer IDE
The ESPlorer IDE is a development environment for building Lua applications for the
ESP8266.

See also:

• Esplorer home page
• eBook: Getting Started with the ESPlorer IDE
• GitHub: 4refr0nt/ESPlorer

GPIO with Lua
Lua has the concept of 13 logical pins identified by 0-12. These pins map to the GPIO
pins of an ESP8266 as follows:

Lua pin
number

ESP8266 Pin NodeMCU
devKit

Lua pin
number

ESP8266 Pin NodeMCU devKit

0 GPIO16 D0 7 GPIO13 D7

1 GPIO5 D1 8 GPIO15 D8

2 GPIO4 D2 9 GPIO3 D9

3 GPIO0 D3 10 GPIO1 D10

4 GPIO2 D4 11 GPIO9 SD2

Page 301

https://github.com/4refr0nt/ESPlorer
http://esp8266.ru/download/esp8266-doc/Getting%20Started%20with%20the%20ESPlorer%20IDE%20-%20Rui%20Santos.pdf
http://esp8266.ru/esplorer/
http://www.esp8266.com/wiki/doku.php?id=nodemcu-unofficial-faq
http://www.esp8266.com/viewforum.php?f=17
http://www.lua.org/
http://www.lua.org/manual/5.1/manual.html
https://github.com/nodemcu/nodemcu-firmware/wiki
https://github.com/nodemcu/nodemcu-firmware

5 GPIO14 D5 12 GPIO10 SD3

6 GPIO12 D6

The GPIO pins known as GPIO6, GPIO7 and GPIO8 on the ESP8266 are not exposed.

Before reading or writing from a GPIO pin, we need to inform Lua of the mode of that
pin. Our choices are input, output or interrupt. For input, we can also declare whether
the input is pull-up or floating.

The syntax of the statement is:

gpio.mode(pin, mode, pullup)

Once the mode has been set, if it is input, we can call gpio.read() to read the value
from the pin and gpio.write() to write a value to the pin.

If we wish to be triggered by an interrupt on the pin (input) we can use gpio.trig().

WiFi with Lua

Networking with Lua

Programming with Basic
See also:

• ESP8266 Basic

Integration with Web Apps

REST Services
The notion of distributed computing dates back many decades. The idea that one
computer could perform a service on behalf of another is a classic concept. The
thinking is that work could be distributed across systems, data could be centralized or
dedicated systems could perform specialized roles. Over the years, many forms of
distributed computing have been tried. These include socket servers, remote procedure
calls (RPC), Systems Network Architecture (SNA), Distributed Computing Environment
(DCE), Web Services and others.

Today (2015), the current incumbent of distributed computing protocols and technology
is REST. REST is a simple protocol that leverages the existing Hyper Text Transport
Protocol (HTTP) used as the transport between browsers and web servers. This
protocol was build to allow a browser to request data from a remote file system hosted
by a web server. It provides HTTP "commands" which include GET, POST, PUT and
others. The notion behind REST is more of an accident than a design. REST re-
purposes HTTP as a communication conduit from a client to a server where a client
makes a REST request and the server offers up a REST service. From the network

Page 302

perspective, it "looks" just like a browser/Web Server interaction but both ends choose
to agree on the formation and interpretation of the communication.

When we add an ESP8266 into the mix, our desire is two-fold. We want the ESP8266
to be able to be a client to external REST service providers and we want the ESP8266
to be the target of clients making REST requests. From the partner perspective, it
should be unaware that it is interacting with the ESP8266 as compared to any other
computing device.

REST protocol
The REST protocol is built on top of HTTP.

See also:

• RFC7230 – HTTP/1.1 – Message Syntax and Routing
• HTTP: The Protocol Every Web Developer Must Know – Part 1

ESP8266 as a REST client
For the ESP8266 to be a REST client, it must build and transmit HTTP requests to the
service provider. This will include building HTTP headers, transmitting the data in a
form expected by the provider (eg. JSON, XML or other textual representation) and
handling the response from the provider which may include interpreting the received
payload.

To transmit a REST request is composed of two parts. First it opens a TCP connection
to the partner and then transmits the HTTP compliant data down that connection. The
first part is easy, the second part is more of a challenge. We could read and understand
the HTTP spec and build the request part by part but this would have to be done for
each project that wishes to use REST client technology. What would be better is if we
had a library that "knows" how to make well formed REST requests and we simply
leveraged its existing functions.

Making a REST request using Mongoose
Using the Mongoose APIs, we can quite easily send a REST request and work with the
response. The high level story is to initialize Mongoose with mg_mgr_init(), request a
connection to the REST service provider with mg_connect(), associate the connection
as being HTTP oriented and then start processing events. The first event to return will
be an MG_EV_CONNECT event indicating that we are now network connected. From there
we can use mg_printf() to send the REST request. When the REST partner responds,
we will get an MG_EV_HTTP_REPLY event and we have completed our request/response
pairing.

Page 303

http://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-1--net-31177
http://tools.ietf.org/html/rfc7230

ESP8266 as a REST service provider
For an ESP8266 to be a REST service provider, basically means that it has to play the
role of a Web Server and respond to Web Server requests. However, unlike a simple
Web Server which simply retrieves and sends file content as a function of the path on
the URL, it is likely that the REST service provider will perform some computation when
an HTTP client request arrives. For example, if we attached a temperature sensor to
the GPIOs of the ESP8266, when a REST request arrives, the ESP8266 could read the
current temperature value and send the encoded result back as a the response to the
request.

Being a Web Server basically means listening on a TCP port and when connections
arrive, interpreting the data received as HTTP protocol. This would be a lot of work on a
project by project basis but thankfully there are a number of pre-written libraries that
perform this task for us and all we need concern ourselves with is examination of any
parameters passed with the request and performing the logic we wish performed when
ever a new request is received.

A library such as ESP8266WebServer would be perfect for this task.

See also:

• ESP8266WebServer

Tasker
Tasker is an Android application that automates and scripts tasks to be executed on an
Android device. Using Tasker we can create a task which is defined as a sequence of
commands and actions to be executed. Next we can create a Profile which maps an
event, that when detected, executes a task. Although this is useful, how does that
relate to an ESP8266? Imagine that the event that occurs is an ESP8266 sending a
message to your phone. With that notion, an ESP8266 can, effectively, trigger anything
that one might be able to do with such a phone. For example, it might make a phone
call, send an SMS message or capture a photograph.

See also:

• Tasker home page
• YouTube: Tasker 101 Tutorials

AutoRemote
Following on from our discussion of Tasker above, we now have an admission. It
appears that Tasker does not have the ability to listen for incoming TCP/IP based
events and messages. However, because Tasker is extensible and developers can

Page 304

https://www.youtube.com/playlist?list=PLjV3HijScGMynGvjJrvNNd5Q9pPy255dL
http://tasker.dinglisch.net/

write plug-ins for it, Tasker can be augmented. One such augmentation is the
AutoRemote plugin. Using that plugin, a TCP/IP message can then be sent and
received by AutoRemote which can then act as a source of events for Tasker.

With AutoRemote configured as a Tasker plugin, we can configure it to listen for HTTP
requests. This causes AutoRemote to listen on TCP port number 1817. The data it is
listening for is an HTTP request. For example:

http://<phone ip>:1817/sendmessage?message=1

With both Tasker and AutoRemote installed, it will still not be listening for incoming WiFi
messages over a local WiFi environment unless we are Internet connected. We must
run a Tasker Task called "AutoRemote WiFi".

For example, in Tasker:

1. Create a new profile triggered by Event → System → Device Boot

2. Create a New Task associated with the profile

3. Add an action from Plugin → AutoRemote → Wifi

4. In the configuration for the action, check "Wifi Service"

What this will do is start the Wifi Service whenever the device (Android) boots.

Unfortunately, AutoRemote has a serious drawback. It doesn't allow Tasker to send a
response back in the original REST request that might contain data that could be used.
For example, if we wish to use AutoRemote to send a request that returned the current
GPS location, that is simply not possible.

When an AutoRemote request arrives, it sets a number of variables within the Tasker
environment that can be used as parameters to Tasker tasks. These include:

• %armessage

• %arpar()

• %arcomm

• %artime

• %arfiles

• %arsenderbtmac

• %arsenderid

• %arsenderlocalip

• %arsendername

• %arsenderpublicip

Page 305

• %arsendertype

• %arvia

◦ wifi

See also:

• AutoRemote home page

DuckDNS
I anticipate that in most folks houses there is a WiFi access point that either directly or
through a modem, connects to the Internet. Since the WiFi access point offers a local
network to which the ESP8266 can join, we now see that the ESP8266 can reach the
outside world through the access point. However, what about the reverse? What if we
want a client on the Internet to reach our ESP8266. How could we achieve that?

If we look at the above diagram (all IP address made up), we see that the ESP8266
knows its own IP address as 192.168.1.2. However, this can't be "shared" with the
Internet as that is a local address and not a global IP address. What would need to be
shared is the IP address of the access point as seen on the Internet.

One way to achieve that is through the use of a service provider such as DuckDNS.
This free service allows you to register a name. Your device (usually a PC) periodically
sends a request to the DuckDNS web site saying "Hello … I am here!". The return
address of that request is always the IP address of your access point connected to the
Internet and hence DuckDNS learns your external address. Later, someone (perhaps a
third party) can ask "What is the IP address" of the name you registered and that
address is made available. Essentially, DuckDNS acts as a real-time broker of logical
names to IP addresses.

Page 306

http://joaoapps.com/autoremote/

If you are concerned that "some scary person" can learn the IP address of your access
point … then don't use DuckDNS. However, for the majority of us, our
modem/router/access point prevents incoming traffic from reaching us and essentially
blocks anything we don't want. But wait … won't this also block requests to the
ESP8266? The answer is "yes it will" which is why you have to define port-forwarding.
Port forwarding a function of your modem/router/access point that says that when a
request arrives for a given port location, automatically forward it to an IP address on
your local network … for example, the network address of your ESP8266.

https://www.duckdns.org/update?domains=XXX&token=XXX&ip=

Mobile apps

Blynk
See also:

• Blynk home page

Sample Snippets
There are times when all we need is a snippet of code that we can copy to achieve a
task. Here we present a set of such snippets that may of use simply by copying and
pasting them.

Forming a TCP connection
Here we see a snippet of code that can be used to make a TCP/IP connection.

#define REMOTE_PORT 80
#define REMOTE_IP "216.58.218.206"
struct espconn conn1;
esp_tcp tcp1;

void connectCB(void *arg) {
 os_printf("We have connected\n");
}

void errorCB(void *arg, sint8 err) {
 os_printf("We have an error: %d\n", err);
}

void makeConnection() {
 conn1.type = ESPCONN_TCP;
 conn1.state = ESPCONN_NONE;
 conn1.proto.tcp = &tcp1;
 conn1.proto.tcp->remote_port = REMOTE_PORT;
 *((uint32 *)conn1.proto.tcp->remote_ip) = ipaddr_addr(REMOTE_IP);
 espconn_regist_connectcb(&conn1, connectCB);
 espconn_regist_reconcb(&conn1, errorCB);
 espconn_connect(&conn1);
 os_printf("We have asked for a connection!");
}

Page 307

http://www.blynk.cc/

Sample applications
Reading and reviewing sample applications is good practice. It allows you to study
what others have written and see if you can understand each of the statements and the
program flow as a whole.

Sample – Light an LED based on the arrival of a UDP datagram
In this sample we will have the ESP8266 become a WiFi station and connect. It will
start to listen for incoming datagrams and if the first byte of received data is the
character "1", it will light an LED. If the character is "0", it will extinguish the LED.

Here is the full code of the application with commentary following:

#include <ets_sys.h>
#include <osapi.h>
#include <os_type.h>
#include <gpio.h>
#include <user_interface.h>
#include <espconn.h>
#include <mem.h>
#include "driver/uart.h"

#define LED_GPIO 15

LOCAL struct espconn conn1;
LOCAL esp_udp udp1;

LOCAL void recvCB(void *arg, char *pData, unsigned short len);
LOCAL void eventCB(System_Event_t *event);
LOCAL void setupUDP();
LOCAL void initDone();

LOCAL void recvCB(void *arg, char *pData, unsigned short len) {
 struct espconn *pEspConn = (struct espconn *)arg;
 os_printf("Received data!! - length = %d\n", len);
 if (len == 0 || (pData[0] != '0' && pData[0] != '1')) {
 return;
 }
 int v = (pData[0] == '1');
 GPIO_OUTPUT_SET(LED_GPIO, v);
} // End of recvCB

LOCAL void initDone() {
 wifi_set_opmode_current(STATION_MODE);
 struct station_config stationConfig;
 strncpy(stationConfig.ssid, "myssid", 32);
 strncpy(stationConfig.password, "password", 64);
 wifi_station_set_config_current(&stationConfig);
 wifi_station_connect();

Page 308

} // End of initDone

LOCAL void setupUDP() {
 conn1.type = ESPCONN_UDP;
 conn1.state = ESPCONN_NONE;
 udp1.local_port = 25867;
 conn1.proto.udp = &udp1;
 espconn_create(&conn1);
 espconn_regist_recvcb(&conn1, recvCB);
 os_printf("Listening for data\n");
} // End of setupUDP

LOCAL void eventCB(System_Event_t *event) {
 switch (event->event) {
 case EVENT_STAMODE_GOT_IP:
 os_printf("IP: %d.%d.%d.%d\n", IP2STR(&event->event_info.got_ip.ip));
 setupUDP();
 break;
 }
} // End of eventCB

void user_rf_pre_init(void) {
}

void user_init(void) {
 uart_init(BIT_RATE_115200, BIT_RATE_115200);

 // Set GPIO15 as a GPIO pin
 PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDO_U, FUNC_GPIO15);

 // Call "initDone" when the ESP8266 has initialized
 system_init_done_cb(initDone);
 wifi_set_event_handler_cb(eventCB);
} // End of user_init

Control starts in the user_init() function where we setup the UART baud. In this
example, we have chosen GPIO15 as our output pin so we map the function of the
physical pin called "MTDO_U" to the logical function of "GPIO15". We register a function
called initDone() to be called when initialization of the device is complete and we also
register a function called eventCB() to be called when WiFi events arrive indicating a
change of state.

With these items having been setup, we return control back to the OS. We expect to be
called back through initDone() when the device is fully read for work. In initDone()
we define ourselves as a Wifi Station and name the access point with its password that
we wish to use. Finally we ask for a connection to the access point.

If all goes well, we will be connected to the access point and then be allocated an IP
address. Both of these will result in events being generated which will cause us to wake
up in eventCB(). The only event we are interested in seeing is the allocation of the IP

Page 309

address. When we are notified of that, we call the function called setupUDP() to
initialize our UDP listening environment.

In setupUDP(), we create a struct espconn control block defined for UDP and
configured to listen on our chosen port of 25867. We also register a receive callback to
the function recvCB(). This will be called when new data arrives. At this point, all our
setup is completed and we have a device connected to the WiFi network listening on
UDP port 25867 for datagrams.

When a datagram arrives, we wake up in recvCB() having been passed in the datagram
data. We check that we actually have data and that it is good … if not, we end the
callback straight away.

Finally, we look at the first character of the data and, based on its value, change the
output value of the GPIO. The physical GPIO is wired to an LED and a resistor.

If a character of '1' is transmitted, the output of GPIO15 goes high and the LED lights. If
the character value is '0', the output of GPIO15 goes low, and the LED is extinguished.

Sample – Ultrasonic distance measurement
The HC SR-04 is an ultrasonic distance measurement sensor.

Send a minimum of a 10us pulse to Trig (low to high to low). Later, Echo will go
low/high/low. The time that Echo is high is the time it takes the sonic pulse to reach a
back-end and bounce back.

Speed of sound is 340.29 m/s (340.29 * 39.3701 inches/sec). Call this Vsound.

Page 310

If Techo is the time for echo response then d = (Techo * Vsound) / 2.

Also the equation for expected Techo lengths is given by:

Techo = 2d/Vsound

For example:

Distance Time

1cm 2 * 0.01 / 340 = 0.058 msecs = 59 usecs

10cm 2 * 0.1 / 340 = 0.59 msecs = 590 usecs

1m 2 * 1 /340 = 5.9 msecs = 5900 usecs (5.9 msecs)

Because the Echo response is a 5V signal, it is vital to reduce this to 3.3V for input into
into the ESP8266. A voltage divider will work. The pins on the device are:

● Vcc – The input voltage is 5V.

● Trig – Pulse (low to high) to trigger a transmission … minimum of 10usecs.

● Echo – Pulses low to high to low when an echo is received. Warning, this is a 5V
output.

● Gnd – Ground.

To drive this device, we need to utilize two pins on the ESP8266 that we will logically
call Trig and Echo. In my design, I set Trig to be GPIO4 and Echo to be GPIO5.

Our design for the application will not include any networking but it should be
straightforward to ass it as needed. We will setup a timer that fires once a second
which is how often we wish to take a measurement. When the timer wakes up, we will
pulse Trig from low to high and back to low holding high for 10 microseconds. We will
now record the time and start polling the Echo pin waiting for it to go high. When it
does, we will record the time again and subtracting one from the one will tell us how

Page 311

long it took the sound to bounce back. From that we can calculate the distance to an
object. If no response is received in 20 msecs, we will assume that there was no object
to detect. We will then log the result to the Serial console.

An example program that performs this design is shown next:

#define TRIG_PIN 4
#define ECHO_PIN 5

os_timer_t myTimer;

void user_rf_pre_init(void) {
}

void timerCallback(void *pArg) {
 os_printf("Tick!\n");
 GPIO_OUTPUT_SET(TRIG_PIN, 1);
 os_delay_us(10);
 GPIO_OUTPUT_SET(TRIG_PIN, 0);
 uint32 val = GPIO_INPUT_GET(ECHO_PIN);
 while(val == 0) {
 val = GPIO_INPUT_GET(ECHO_PIN);
 }
 uint32 startTime = system_get_time();
 val = GPIO_INPUT_GET(ECHO_PIN);
 while(val == 1 && (system_get_time() - startTime) < (20 * 1000)) {
 val = GPIO_INPUT_GET(ECHO_PIN);
 }
 if (val == 0) {
 uint32 delta = system_get_time() - startTime;
 // Calculate the distance in cm.
 uint32 distance = 340.29 * 100 * delta / (1000 * 1000 * 2);
 os_printf("Distance: %d\n", distance);
 } else {
 os_printf("No echo!\n");
 }
} // End of timerCallback

void user_init(void) {
 uart_init(BIT_RATE_115200, BIT_RATE_115200);
 // Setup ultrasonics pins as GPIO
 setAsGpio(TRIG_PIN);
 setAsGpio(ECHO_PIN);
 setupBlink(15);
 // Set the trigger pin to be default low
 GPIO_OUTPUT_SET(TRIG_PIN, 0);
 os_timer_setfn(&myTimer, timerCallback, NULL);
 os_timer_arm(&myTimer, 1000, 5);
} // End of user_init

Once this has been written and tested, we will make a second pass at the puzzle but
this time using an interrupt to trigger the response to the echo.

See also:

Page 312

• GPIOs

Sample – WiFi Scanner
A WiFi scanner is an application which periodically scans for available WiFi networks
and shows them to the user. In our design, we will scan periodically and remember the
set of networks we find. When we perform re-scans, we will check to see if each of the
networks located is a network we have previously seen and, if not, list it to the user. We
will also keep a "last seen" time for each network and if a network has not been seen for
a minute, then we will forget about it such that if it appears again, we will once more list
it to the user.

To illustrate our design, we will break the solution into a number of parts. The first part
will be to register a callback function that is called every 30 seconds. This callback will
be responsible for requesting a WiFi scan using wifi_station_scan(). This takes a
callback function which itself will be invoked when the scan is complete.

When the scan completes, we will have a new list of detected networks. We will walk
this list and for each network detected, determine if we have seen it before. If we have,
we will update the last seen time. If not, we will add it to the list of previously seen
networks and log it to the user.

A second timer callback will run once a minute and will walk the list of previously seen
networks. If any of them are older than a minute, we will remove them.

See also:

• Scanning for access points

Sample – Working with micro SD cards
A micro SD card is a small portable storage device that can host gigabytes of data.
Through the use of an adapter, a micro SD card can be leveraged in conjunction with an
ESP8266 providing read and write access to data that persists across ESP8266
restarts.

Sample – Playing audio from an event
In this sample, we wish an event to be detected by the ESP8266 which, when it
happens, causes an audio file to be played.

Sample – A changeable mood light
NeoPixels are LEDs that are driven by a single data line of high speed signaling. Most
NeoPixels have a +ve and ground voltage source as well as a data line for input and a

Page 313

data line for output. The output of one NeoPixel can be fed into the input of the next
one to produce a string of such LEDs. The input data to the LED is a stream of 24 bits
of encoded data which should be interpreted as 8 bits for the red channel, 8 bits for the
green channel and 8 bits for the blue channel. Each channel can thus have a
luminance value of between 0 and 255. By mixing the values for each of the channels
together, you can color an LED to any color you may choose. After sending in a stream
of 24 bits, if we send in a second stream of 24 bits quickly after the first stream, the
second stream is "pushed" through to the next LED in the chain. This can be repeated
as far as desired. If we pause sending in data, the current values are "latched" into
place and each LED them remembers its own value.

The timings of the data signals for these LEDs can be quite tricky but fortunately great
minds have already built fantastic libraries for driving them correctly so we need not
concern ourselves with these low level timings and can instead concentrate on devising
interesting projects and purposes to which the LEDs can be placed. There are a
number of different types of these LEDs with the most common ones being known as
WS2811, WS2812 or PL9823.

Within the Espruino JavaScript environment, a method called neopixelWrite() can be
found. This takes two parameters. The first is the ESP8266 GPIO pin that will be used
as the source of the signals to the LEDs. It is to this pin that the LEDs should be wired.
The pin used for data output from the ESP8266 to the NeoPixels should be set in GPIO
output mode. For example:

pinMode(pin, "output");

The second parameter is an array of integers. The values of the array should be
supplied in groups of 3 corresponding to the 3 channels of red, green and blue. For
example, if we had one NeoPixel connected to GPIO4 on an ESP8266 and we wanted
to set it to all red, we might code:

neopixelWrite(new Pin(4), [255, 0, 0]);

If we wanted the next pixel to be green while the first is red, we might write:

neopixelWrite(new Pin(4), [255, 0, 0, 0, 255, 0]);

Again, there is no obvious limit to the number of LEDs we can string together.

Now that we see that we can set the brightness and color of an LED, let us look at how
we might design some code to do something. Let us imagine that we had a string of 16
LEDs and wanted to make them the same color … we might define a function as
follows:

function colorLeds(red, green, blue) {
 var data = [];
 for (var i=0; i<16; i++) {
 data.push(green);
 data.push(red);

Page 314

 data.push(blue);
 }
 esp8266.neopixelWrite(NodeMCU.D2, data);
}

If we call this function with the correct red, green and blue values, it will set the LEDs
string correctly.

Now let us go one step further. Imagine that we received a network REST request that
described the color that we want the LEDs to show. A complete application may be:

var esp = require("ESP8266");
var NodeMCU = {
 // D0: new Pin(16),
 D1 : new Pin(5),
 D2 : new Pin(4),
 D3 : new Pin(0),
 D4 : new Pin(2),
 D5 : new Pin(14),
 D6 : new Pin(12),
 D7 : new Pin(13),
 D8 : new Pin(15),
 D9 : new Pin(3),
 D10 : new Pin(1)
};

pinMode(NodeMCU.D2, "output");

function colorLeds(red, green, blue) {
 var data = [];
 for (var i=0; i<16; i++) {
 data.push(green);
 data.push(red);
 data.push(blue);
 }
 esp.neopixelWrite(NodeMCU.D2, data);
}

function beServer() {
 var http = require("http");
 var httpServer = http.createServer(function(request, response) {
 print(request);
 var partsOfUrl = request.url.split("?");
 if (partsOfUrl.length > 1) {
 var options = partsOfUrl[1].split('&');
 var optionsObj = {};
 for (var i=0; i<options.length; i++) {
 var splitEquals = options[i].split('=');
 optionsObj[splitEquals[0]] = splitEquals[1];
 }
 print("Final obj: " + JSON.stringify(optionsObj));
 if (optionsObj.color !== null) {
 var red = parseInt(optionsObj.color.substr(0,2), 16);
 var green = parseInt(optionsObj.color.substr(2,2), 16);
 var blue = parseInt(optionsObj.color.substr(4,2), 16);

Page 315

 print("red: " + red + ", green: " + green + ", blue: " + blue);
 colorLeds(red, green, blue);
 }
 }
 print("Result url = " + url);
 response.writeHead(200, {
 "Access-Control-Allow-Origin": "*"
 });
 response.end("");
 }); // End of on new browser request

 httpServer.listen(80);
 print("Now being an HTTP server!");
} // End of beServer

var ssid = "ssid";
var password = "password";

// Connect to the access point
var wifi = require("wifi");
print("Connecting to access point.");
wifi.connect(ssid, password, null, function(err, ipInfo) {
 if (err) {
 print("Error connecting to access point.");
 return;
 }
 var ESP8266 = require("ESP8266");
 print("Connect says that we are now connected!!!");
 print("Starting web server at http://" + ESP8266.getAddressAsString(ipInfo.ip)
+":80");
 beServer();
});

When this application runs, it connects to the local WiFI access point and then starts
listening for incoming REST requests. A rest request is expected to have a query
parameter at the end with the format color=value where value is encoded as 6 hex
characters corresponding to the color. Finally, we can write a web page that will present
a color picker and, when we pick a color, send a REST request to the ESP8266 to
illuminate the LEDs appropriately. Here is a sample web page to achieve this task:

<!DOCTYPE html>
<html>
<head>
<meta charset="ISO-8859-1">
<title>Set LED colors</title>

<link
 href="http://cdnjs.cloudflare.com/ajax/libs/jqueryui/1.11.2/jquery-ui.min.css"
 rel="stylesheet" type="text/css" />
<script
src="http://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.15/require.min.js"></script>
<link rel='stylesheet' href='spectrum.css' />
<script>
 require

Page 316

 .config({
 baseUrl : "src",
 paths : {
 "jquery" : "http://cdnjs.cloudflare.com/ajax/libs/jquery/2.1.1/jquery.min",
 "jquery-ui" : "http://cdnjs.cloudflare.com/ajax/libs/jqueryui/1.11.2/jquery-
i.min",
 },
 shim : {
 "jquery-ui" : {
 deps : ["jquery"],
 exports : 'jQueryUI'
 }
 }
 // End of shims
 });
 require(["jquery", "spectrum", "jquery-ui"], function($) {
 $(function() {
 var allowHttp = true;
 $("#flat").spectrum({
 flat : true,
 preferredFormat : "rgb",
 move : function(color) {
 if (allowHttp) {
 allowHttp = false;
 $.ajax({
 url : "http://192.168.1.10",
 data : {
 color : color.toHex()
 },
 success: function() {
 allowHttp = true;
 },
 error: function() {
 allowHttp = true;
 }
 });
 }
 },
 showInput : true,
 showButtons : false
 });
 }); // End of on load
 }); // End of require
</script>
</head>
<body>
 <div id="flat" style="width:500px; height: 500px;"></div>
</body>
</html>

The end result as seen on the web page looks as follows:

Page 317

Selecting a new color causes the data to sent to the ESP8266 which colors the LEDs
appropriately with the over-all end result being the ability to change the mood light of the
LED string.

Sample – Bootstrapping networking
Imagine that you are given a fantastic ESP8266 or ESP32 application and you install it
on your device. The likelihood is that it will use WiFi based networking. Now comes the
interesting question of just how do you bootstrap the device?

Sample Libraries
There are times when commonly used functions can be captured and reused over and
over. This section describes just such a set of functions which have been collected.
The source for these functions has been placed in Github at <location to be provided>.

The functions, when compiled, are placed in a library called libcommon.a. This can then
be linked within your Makefile so that unresolved references to these functions can be
satisfied.

A header file called "common.h" is all that one needs to add into your own applications.

Function list

authModeToString
Given an AUTH_MODE, return a string representation of the mode.

char *authModeToString(AUTH_MODE mode)

Page 318

checkError
Check a return code for an error.

void checkError(sint8 err)

Check the err code for an error and if it is one, log it.

delayMilliseconds
Delay for a period of milliseconds.

void delayMilliseconds(uint32 milliseconds)

The milliseconds parameters is the number of milliseconds to delay before returning.

dumpBSSINFO
Dump an instance of struct bss_info to the log.

void dumpBSSINFO(struct bss_info *bssInfo)

dumpEspConn
Dump to the log a decoded representation of the struct espconn.

void dumpEspConn(struct espconn *pEspConn)

dumpRestart
Dump the restart information to the log.

void dumpRestart()

See also:

• Exception handling

dumpState
Dump the WiFi station state to the log.

void dumpState()

See also:

• system_print_meminfo
• system_get_free_heap_size
• system_get_boot_version
• system_get_userbin_addr
• system_get_boot_mode
• system_get_flash_size_map
• system_get_sdk_version()

Page 319

errorToString
Given an error code, return a string representation of it.

char *errorToString(sint8 err)

eventLogger
Write a WiFi event to the log.

void eventLogger(System_Event_t *event)

We can register this function as a callback for a WiFi event. Write the event data to the
log.

See also:

• Handling WiFi events

eventReasonToString
Convert an event reason to a string representation.

char *eventReasonToString(int reason)

Some of the WiFi event callbacks can return a reason value that is an encoding of the
reason that something failed. This function returns a string representation of the int
value code.

flashSizeAndMapToString
Return a string representation of the flash size and map.

char *flashSizeAndMapToString()

setAsGpio
Set a pin to be used as a GPIO.

void setAsGpio(uint8 pin)

Set the GPIO supplied as pin to be GPIO function.

See also:

• GPIOs
• GPIOs

setupBlink
Setup a blinking LED on the given pin.

void setupBlink(uint8 blinkPin)

Page 320

The blinkPin parameter is the pin to use for blinking.

toHex
Convert an array of bytes to a hex string.

uint8 *toHex(uint8 *ptr, int size, uint8 *buffer)

Convert the bytes pointed to by ptr for size bytes into a hex string. The buffer
parameter will be where the result will be stored. It must be 2 * size + 1 bytes in length
(or more). Each byte is 2 hex characters plus a single byte NULL terminator at the end.
The function returns the start of the buffer.

Using FreeRTOS
When we think of a modern computer, we quickly realize that it has an operating system
of some sort. Common examples of these are Microsoft Windows or Linux. The
purpose of an operating system is to provide an interface between software applications
and the underlying hardware infrastructure. If it wasn't for an operating system, each
application would likely have to perform its own similar implementation of such functions
which would be a waste. Why not write it once and provide an abstraction layer upon
which higher level functions (such as applications) can be built. The capabilities of
operating systems on PCs are very similar. They handle memory management,
hardware I/O (reading from keyboards and mice and driving graphics cards), task
management (multiple programs running concurrently), disk and file system interactions
and much more. Early operating systems provided basic functions while today’s
operating systems have become richer and richer to the point where they may no longer
be considered as just operating systems. Since when did an operating system need to
provide Freecell or Minesweeper?

If we rewind the clock and start again and look to the core aspects of an operating
system, we come to today's FreeRTOS. FreeRTOS is an open source operating
system that provides very basic functions to higher level applications … again … the
core notion of the purpose of an operating system in the first place. However,
FreeRTOS is designed for embedded systems such as the ESP8266 and ESP32. It is
orders of magnitude simpler than other operating systems such as Linux but this is by
design.

FreeRTOS has been ported to a wide variety of hardware platforms including the
Xtensa CPUs used in the ESP8266 and ESP32. When compiled, it results in a library
that is under 5K Bytes in size.

The core functions it provides are:

Page 321

• memory management

• task management

• API synchronization

See also:

• Free RTOS home page

• Study of an operating system: FreeRTOS

• Github: espressif/ESP32_RTOS_SDK

The architecture of a task in FreeRTOS
Let us start with the notion of a task. A task is a piece of work that we wish to perform.
If you wish, you can think of this as a C language function. For example:

int add(int a, int b) {
 return a + b;
}

could be considered a task … although this would be ridiculously simple. Generically,
think of a task as the execution of a piece of C code that you have authored. We
normally think of code running from its start all the way through to its end … however,
this is not necessarily the most efficient way to proceed. Consider the idea of an
application which wishes to send some data over the network. It may wish to send a
megabyte of data … however it may also find that it can only send 100K at a time
before it has to wait for the transmitted data to be delivered. In that story, it would send
100K and wait for the transmission to complete, send the next 100K and wait for that
transmission to complete and so on. But what of those periods of time where the code
is waiting for a previous transmission to complete? What is the CPU doing at those
times?

The chances are that it is doing nothing but monitoring for the flag that states that the
transmission has completed. This is a waste. In theory the CPU could be performing
other work (assuming that there is in fact other work that could be performed). If there
is indeed other work available, we could "context switch" between these work items
such that when one blocks waiting for something to happen, control could be passed to
another to do something useful.

If we call each piece of work "a task", that is the value of a task in FreeRTOS. The task
represents a piece of work to be performed but instead of assuming that the work will
quickly go from start to end, we are declaring that there may be times within the work
where it can relinquish control to other work (tasks).

With this in mind, we should think about how a task is created. There is an API
provided by FreeRTOS called "xTaskCreate()" which creates an instance of a task.

Page 322

https://github.com/espressif/ESP32_RTOS_SDK
http://wiki.csie.ncku.edu.tw/embedded/FreeRTOS_Melot.pdf

Here it is important to realize that a task is a logical abstraction. There isn't anything
specific provided in the CPU that knows what a task is. Instead, it is the operating
system (FreeRTOS in our case) that is providing the model of the task for us.

If we think deeply about a task, we can conceive of the task having a state. At any
given time, either a task is running or it is not running. A task that is running is one that
is actively using the CPU (i.e. not waiting for anything else to happen). A task that is not
running is one that doesn't have the CPU. For example, if we created two tasks, one of
them would be running and the other not running. If the one that is running reaches a
point where it can no longer perform meaningful work, it will relinquish CPU control and
become not running. The other task then has the opportunity to become running.

Going even deeper, when a task is not running, it may be "not running" for a particular
reason … such as:

• Blocked waiting for something to complete

• Suspended by the user

• Ready to run such that when the task that is running is no-longer running, this
task is eligible to become running

In FreeRTOS we define a task as a C function that takes a void * parameter. For
example,

void myTask(void *myParameters)

might be a signature for a task function.

A task function is expected to run forever. Should it need to end, it should clean itself up
before returning by invoking vTaskDelete().

When a task relinquishes control back to the OS, the OS then may have a choice
between multiple tasks as to which one should become running. This selection process
is called "scheduling". FreeRTOS uses the concept of a "priority" to determine which
task to run next. Each task that is ready to run is considered a potential candidate and
the one that has the highest priority will become the one that is running.

When coding directly to FreeRTOS in non-ESP8266 environment, one would normally
have to make a call to vTaskStartScheduler() to ensure that the task scheduler is
operational. This should not be attempted in the ESP8266 environment as the internals
of the ESP8266 environment have already registered other tasks and already started
the scheduler.

There are a number of timer related functions within FreeRTOS that work on the notion
of "ticks" where a tick is a unit of time. In the ESP8266 FreeRTOS the tick interval is
1/100th of a second (10 msecs).

Page 323

Lists within RTOS
FreeRTOS provides list processing functions.

ESP8266 – Building apps for RTOS
Espressif distribute an SDK for building RTOS apps for the ESP8266. This SDK is
available from Github. My personal choice for retrieving the SDK is to use the latest
version of Eclipse and use its in-built Git retrieval tools.

The FreeRTOS version supplied by Espressif appears to be v7.5.2. The latest available
from FreeRTOS themselves appears to be v8.2.3.

Eclipse also provides an environment for C program compilation. The suggested
C→Object compilation flags are:

Parameter/flag Meaning

-g

-Wpointer-arith

-Wundef

-Werror

-Wl, -El

-fno-inline-functions

-nostdlib

-mlongcalls

-mtext-section-literals

-ffunction-sections

-fdatasections

For linking we use the following linker flags:

-L$(SDK_PATH)/lib

-Wl, --gc-sections

-nostdlib

-T$(LD_FILE)

-Wl, --no-check-sections

-u call_user_start

-Wl, -static

-Wl, --start-group

-lminic

-lgcc

Page 324

-lhal

-lphy

-lpp

-lnet80211

-lwpa

-lcrypto

-lmain

-lfreertos

-llwip

When configuring the CDT in Eclipse, the following settings are suggested:

• C/C++ Build → Environment – ESP8266_SDK_ROOT = <Path to RTOS SDK>

• C/C++ General → Paths and Symbols – GNU C –
{ESP8266_SDK_ROOT}/include/espressif

• C/C++ General → Paths and Symbols – GNU C –
{ESP8266_SDK_ROOT}/include/lwip

• C/C++ General → Paths and Symbols – GNU C –
{ESP8266_SDK_ROOT}/include/lwup/ipv4

Having compiled the source code into object files and then linked the object files into an
ELF formatted executable, what remains is to split this executable into the sections to
be loaded into ESP8266 flash memory at different locations. This will result in two files
for loading into flash. One file will be the data that will eventually be loaded into RAM at
runtime while the other will be available as addressable flash memory.

We can use esptool_ck for this task:

esptool_ck -eo bin.elf -bo app_0x00000.bin -bs .text -bs .data -bs .rodata -bs
.iram0.text -bc -ec
esptool_ck -eo $bin.elf -es .irom0.text ap_0x10000.bin -ec

After flashing to the ESP8266, we may find that the following boot messages are
produced:

pp_task_hdl : 3ffef4e0, prio:13, stack:512
pm_task_hdl : 3ffefdb0, prio:1, stack:176
tcpip_task_hdl : 3ffef260, prio:10,stack:512
idle_task_hdl : 3ffef300,prio:0, stack:176
tim_task_hdl : 3fff1428, prio:2,stack:256
xPortStartScheduler
frc2_timer_task_hdl:3fff1938, prio:12, stack:512

OS SDK ver: 1.3.0(68c9e7b) compiled @ Nov 2 2015 18:53:21

Page 325

phy ver: 484, pp ver: 9.9

SDK version:1.3.0(68c9e7b)

See also:

• Github: espressif/ESP8266_RTOS_SDK

• Github: espressif/ESP32_RTOS_SDK

Consoles with RTOS
The default debug stream is written to UART0 at a baud rate of 74880.

Debugging tips
If things get weird, erase all the flash of your device and start again.

In FreeRTOS, to cause debugging to be written to UART1, the following can be used:

UART_ConfigTypeDef uart_config;
uart_config.baud_rate = BIT_RATE_115200;
uart_config.data_bits = UART_WordLength_8b;
uart_config.parity = USART_Parity_None;
uart_config.stop_bits = USART_StopBits_1;
uart_config.flow_ctrl = USART_HardwareFlowControl_None;
uart_config.UART_RxFlowThresh = 120;
uart_config.UART_InverseMask = UART_None_Inverse;
UART_ParamConfig(UART1, &uart_config);
UART_SetPrintPort(UART1);

Page 326

https://github.com/espressif/ESP32_RTOS_SDK
https://github.com/espressif/ESP8266_RTOS_SDK

Developing solutions on Linux
When working in a Linux environments, there are certain tips and techniques which
might be useful/valuable.

• When connecting to an ESP32 or an ESP8266 board using a USB→UART
connector, the device may show up under /dev as ttyUSB0. If we examine the
permissions upon this file, we may find that it is configured as:

crw-rw---- root dialout

This means that it is accessible by root and users in the dialout group. If you
wish to flash the ESP8266 through this device, your userid should thus be a
member of this group. To add your user to the group, the following Linux
command may be used:

sudo usermod -a -G dialout <yourUserid>

after making the change, you must log out and log back in again.

• A useful terminal client is GtkTerm. This tool provides a terminal viewer that can
be used to monitor the USB→UART connector to view log and debug messages.
It creates a configuration file in $HOME/.gtktermrc that can be edited to change
the default serial port (eg. /dev/ttyUSB0) as well as changing the baud rate to
your desired value.

• Another good terminal client is screen. Screen is a full screen terminal emulator.

• Yet another terminal client is the classic cu command. Again, very easy to use.
An example of use would be:

$ cu --line /dev/ttyUSB0 --speed 115200

To quit a cu session, enter "~.".

Building a Linux environment
If you don't run Linux natively you may wish to consider running Oracle VirtualBox to
host a Linux environment on your Windows or Mac machine. Oracle VirtualBox is an
Open Source implementation of an operating system virtualization product. One can
download VirtualBox from here:

https://www.virtualbox.org/

In my tests, I ran Ubuntu 15.10.

I define a disk size of at least 20GBytes and 2GBytes of RAM. If you have multiple
cores, you may want to define those as being available.

Page 327

https://www.virtualbox.org/

After building an image, make sure that you enable the ability to copy and paste
between the host OS and the guest OS.

Also make sure that the VirtualBox guest tools are installed.

There are some packages that you really can't do without including:

• git

You can install new packages with:

sudo apt-get install <package>

Once you have a Linux OS installed, next we want to build a compilation environment.
The popular pfalcon/esp-open-sdk is what we will illustrate.

Before starting the remainder of our build, we must ensure that a number of optional
component to Linux are installed as they are mandatory for building the toolchain. The
following command may be run to install the set of components we need:

sudo apt-get install make unrar autoconf automake libtool-bin gcc g++ gperf \
 flex bison texinfo gawk ncurses-dev libexpat-dev python python-serial sed \
 git unzip bash help2man wget bzip2

First we must execute the command to download the github based project:

git clone --recursive https://github.com/pfalcon/esp-open-sdk.git

Once downloaded, we can build the solution with:

make STANDALONE=y

Note that the build needs network access and will access external websites including:

Page 328

• www.mpfr.org

The build/compilation will take about an hour to complete.

At the conclusion, a set of new directories can be found. Among these are:

• xtensa-lx106-elf/bin – The compiled tools including gcc, objcopy and gdb.

• sdk – A symbolic link to the latest Espressif SDK

We want to add some environment variables into our user's profile:

• Add the xtensa-lx106-elf/bin to the PATH

• Export ESP8266_SDK_ROOT to the root of the SDK

You will also want to install an esptool-ck into your local bin folder.

You will also want to add your userid to the group called dialout.

Here is a sample Makefile for Linux:
PROJ_NAME=test1
COMPORT=/dev/ttyUSB0
OBJS=user_main.o uart.o
#
CC=xtensa-lx106-elf-gcc
OBJS=user_main.o uart.o
APP=a.out
ESPTOOL_CK=esptool
CCFLAGS= -Wimplicit-function-declaration -fno-inline-functions -mlongcalls -mtext-section-literals \
-mno-serialize-volatile -I$(ESP8266_SDK_ROOT)/include -I. -D__ETS__ -DICACHE_FLASH -DXTENSA -DUSE_US_TIMER

LDFLAGS=-nostdlib \
-L$(ESP8266_SDK_ROOT)/lib -L$(ESP8266_SDK_ROOT)/ld -T$(ESP8266_SDK_ROOT)/ld/eagle.app.v6.ld \
-Wl,--no-check-sections -u call_user_start -Wl,-static -Wl,--start-group \
-lc -lgcc -lhal -lphy -lpp -lnet80211 -llwip -lwpa -lmain -ljson -lupgrade -lssl \
-lpwm -lsmartconfig -Wl,--end-group

all: $(PROJ_NAME)_0x00000.bin $(PROJ_NAME)_0x40000.bin

a.out: $(OBJS)
$(CC) -o a.out $(LDFLAGS) $(OBJS)

$(PROJ_NAME)_0x00000.bin: a.out
$(ESPTOOL_CK) -eo $< -bo $@ -bs .text -bs .data -bs .rodata -bs .iram0.text -bc -ec || true

$(PROJ_NAME)_0x40000.bin: a.out
$(ESPTOOL_CK) -eo $< -es .irom0.text $@ -ec || true

.c.o:
$(CC) $(CCFLAGS) -c $<

clean:
rm -f a.out *.o *.bin

flash: all
$(ESPTOOL_CK) -cp $(COMPORT) -cd nodemcu -cb 115200 -ca 0x00000 -cf $(PROJ_NAME)_0x00000.bin
$(ESPTOOL_CK) -cp $(COMPORT) -cd nodemcu -cb 115200 -ca 0x40000 -cf $(PROJ_NAME)_0x40000.bin

And also a simple "hello world" application:

Page 329

#include "osapi.h"
#include "user_interface.h"
#include "uart.h"

#include "espmissingincludes.h"

void uart_init_2(UartBautRate uart0_br, UartBautRate uart1_br);

void systemInitDoneCB() {
os_printf("Hello World\n");

}
void user_init() {

uart_init_2(115200, 115200);
system_init_done_cb(systemInitDoneCB);

}

Next we install Java 8. Download from Oracle and extract into /usr/java. For example
tar zxvf file. Update JAVA_HOME and PATH.

Now that we have a compilation environment, chances are high we will want an IDE ….
my favorite is Eclipse.

https://eclipse.org/downloads/

Run the Eclipse installer

Page 330

https://eclipse.org/downloads/

Page 331

Page 332

Page 333

After having launched Eclipse, we want to install the updates. However, for Mars, there
won't be any as it is so new.

Install GtkTerm

Page 334

Launch it once to create the ~/.gtktermrc file. Edit that file and change:

• port = /dev/ttyUSB0

• speed = 115200

Add the current user to the group dialout

sudo usermod -a -G dialout <yourUserid>

You will need to logout and login again for this to take effect. You can validate that your
userid has the correct group by running the id command from a shell:

$ id
uid=1000(kolban) gid=1000(kolban) groups=1000(kolban),4(adm),20(dialout),24(cdrom),
27(sudo),30(dip),46(plugdev),108(lpadmin),124(sambashare)

Download igrr/esptool-ck as esptool from Github releases. Ensure that it is in your bin
folder and that bin folder is on your path.

Now we are finally ready to build an app. We can download a sample for this story from
Github at the following URL:

https://github.com/nkolban/Sample-ESP8266-App.git

This sample assumes that the xtensa tools are on your PATH and that the environment
variable ESP8266_SDK_ROOT is properly defined.

I would also install:

• Chrome

Page 335

https://www.google.com/intl/en-US/chrome/browser/desktop/index.html
https://github.com/nkolban/Sample-ESP8266-App.git
https://github.com/igrr/esptool-ck/releases

See also:

• Oracle Virtual Box

• Ubuntu downloads

API Reference
Now we have a mini reference to the syntax of many of the ESP8266 exposed APIs.
Do not use this reference exclusively. Please also refer to the published Espressif SDK
Programming Guide.

Some acronyms and other names are used in the naming of APIs and may need some
explanation to fully appreciate them:

• dhcpc – DHCP client

• dhcps – DHCP server

• softap – Access point implemented in software

• wps – WiFi Protected Setup

• sntp – Simple Network Time Protocol

• mdns – Multicast Domain Name System

• uart – Universal asynchronous receiver/transmitter

• pwm – Pulse width modulation

FreeRTOS API reference

eTaskGetState
Retrieve the state of a task.

eTaskState eTaskGetState(TaskHandle_t xTask)

pcTaskGetName
Get the name of the task.

char *pcTaskGetTaskName(TaskHandle_t xTaskToQuery)

xTaskCreate
Create a new instance of a task.

Page 336

http://www.ubuntu.com/download/desktop
https://www.virtualbox.org/

BaseType_t xTaskCreate(
 pdTASK_CODE pvTaskCode,
 const signed portCHAR *pcName,
 unsigned portSHORT usStackDepth,
 void *pvParameters,
 unsigned portBASE_TYPE uxPriority,
 xTaskHandle *pxCreatedTask)

• pvTaskCode – Pointer to the task function. In C programming, we can simply
supply the name of a function or, as has been seen in some samples, the
address of the name of the function. Apparently these equate to items that are
close enough to be used interchangablly.

• pcName – Debugging name of the task.

• usStackDepth – Size of the stack for the task.

• pvParameters – Parameters for the task instance. This may be NULL.

• uxPriority – Priority of the task instance.

• xTaskHandle – Reference to the newly created task instance. This may be
passed in as NULL if no task handle is required to be returned.

When a created task is invoked and then decides to end via a return, it is essential that
the task call vTaskDelete(NULL) before it completes. Calling this is an indication to
FreeRTOS that the task is finished and need no longer be considered for context
switching. Experience seems to show that if we don't do this then the ESP32 will crash.
In summary, end your return logic in your task functions with:

{
 // Previous code here.
 vTaskDelete(NULL);
 return;
}

See also:

• vTaskDelete

• xTaskCreate

xTaskCreatePinnedToCore

This is a mysterious function that appears to be ESP32 specific.

When a created task is invoked and then decides to end via a return, it is essential that
the task call vTaskDelete(NULL) before it completes. Calling this is an indication to
FreeRTOS that the task is finished and need no longer be considered for context

Page 337

http://www.freertos.org/a00125.html

switching. Experience seems to show that if we don't do this then the ESP32 will crash.
In summary, end your return logic in your task functions with:

{
 // Previous code here.
 vTaskDelete(NULL);
 return;
}

In an ESP32 environment, an example, we might have:

void myTask(void *parms) {
 // Do something
 vTaskDelete(NULL);
}

main() {
 xTaskCreatePinnedToCore(&myTask, "myTask", 2048, NULL, 5, NULL, 0);
}

vTaskDelay
Delay a task for a specified number of ticks.

void vTaskDelay(const TickType_t xTicksToDelay)

The constant called portTICK_PERIOD_MS provides the number of ticks in a millisecond.
If we wished to delay for 1 second, we could then supply 1000 / portTICK_PERIOD_MS.

See also:

• vTaskDelay

vTaskDelayUntil
Delay a task until a specified absolute time.

void vTaskDelayUntil(const TickType_t *pxPreviousWakeTime, const TickType_t
xTimeIncrement)

This function blocks a task until some absolute time in the future.

• pxPreviousWakeTime – The base time which the increment will be relative from.

• xTimeIncrement – The time in ticks which, when added to the
pxPreviousWakeTime, will be the time that the task is ready to run again.

See also:

• vTaskDelayUntil

vTaskDelete
Delete an instance of a task.

Page 338

http://www.freertos.org/vtaskdelayuntil.html
http://www.freertos.org/a00127.html

void vTaskDelete(TaskHandle_t pxTask)

This function will delete an instance of a task. If the pxTask handle is NULL then the
current task will be deleted.

See also:

• xTaskCreate

• vTaskDelete

xTaskGetCurrentTaskHandle
Get the current task handle.

xTaskGetTickCount
Get the current tick count.

portTickType xTaskGetTickCount()

Return the number of ticks that have occurred since the task scheduler was started.

vTaskList
void vTaskList(char *pcWriteBuffer)

NOT AVAILABLE

vTaskPrioritySet
void vTaskPrioritySet(TaskHandle_t pxTask, UBaseType_t uxNewPriority)

See also:

• vTaskPrioritySet

vTaskResume
void vTaskResume(TaskHandle_t pxTaskToResume)

xTaskResumeAll
See also:

• vTaskResumeAll

vTaskResumeFromISR
void xTaskResumeFromISR(TaskHandle_t pxTaskToResume)

Page 339

http://www.freertos.org/a00135.html
http://www.freertos.org/a00129.html
http://www.freertos.org/a00126.html

vTaskSuspend
void vTaskSuspend(TaskHandle_t pxTaskToSuspend)

vTaskSuspendAll
See also:

• vTaskSuspendAll

xQueueCreate
Create a queue for holding items.

xQueueHandle xQueueCreate(
 unsigned portBASE_TYPE uxQueueLength,
 unsigned portBASE_TYPE uxItemSize)

• uxQueueLength – The maximum number of items that the queue can contain.

• uxItemSize – The size in bytes reserved for each element in the queue.

See also:

• xQueueCreate

vQueueDelete
void vQueueDelete(xQueueHandle xQueue)

xQueuePeek
portBASE_TYPE xQueuePeek(
 xQueueHandle xQueue,
 void *pvBuffer,
 portTickType xTicksToWait)

xQueueReceive
portBASE_TYPE xQueueReceive(
 xQueueHandle xQueue,
 void *pvBuffer,
 portTickType xTicksToWait)

xQueueSend
portBASE_TYPE xQueueSend(
 xQueueHandle xQueue,
 const void * pvItemToQueue,
 portTickType xTicksToWait)

Page 340

http://www.freertos.org/a00116.html
http://www.freertos.org/a00134.html

xQueueSendToBack
portBASE_TYPE xQueueSendToBack(
 xQueueHandle xQueue,
 const void * pvItemToQueue,
 portTickType xTicksToWait);

xQueueSendToFront
portBASE_TYPE xQueueSendToFront(
 xQueueHandle xQueue,
 const void * pvItemToQueue,
 portTickType xTicksToWait)

vSemaphoreCreateBinary

xSemaphoreCreateCounting

vSemaphoreGive

xSemaphoreGiveFromISR

vSemaphoreTake

pvPortMalloc

pvPortFree

List Processing

vListInitialise
Initialize a list.

void vListInitialise(xList * const pxList)

The pxList is a list that should be initialized.

vListInitialiseItem
Initialize an item for insertion into a list.

Page 341

void vListInitialiseItem(xListItem * const pxItem)

Initialize an item that can be added to a list.

vListInsert
Insert an item into a list.

void vListInsert(xList * const pxList, xListItem * const pxNewListItem)

vListInsertEnd
Insert an item at the end of a list

void vListInsertEnd(xList * const pxList, xListItem * const pxNewListItem)

lwip Reference

Sockets
• accept

• bind

• shutdown

• closesocket

• connect

• getsocketname

• getpeername

• setsockopt

• getsockopt

• listen

• recv

• recvfrom

• send

• sendto

• socket

• select

Page 342

• ioctlsocket

• read

• write

• close

• fcntl

Timer functions
Timer functions allow us to register functions that will be executed at a time in the future
or periodically after time passes. We also group functions that manipulate or retrieve
time values in this set.

os_delay_us
Delay for microseconds.

void os_delay_us(uint16 us)

Delay for a maximum interval of 65535 microseconds.

Includes:

• osapi.h

See also:

• Timers and time

• system_set_os_print

os_timer_arm
Enable a millisecond granularity timer.

void os_timer_arm(
os_timer_t *pTimer,
uint32_t milliseconds,
bool repeat)

Arm a timer such that is starts ticking and fires when the clock reaches zero.

The pTimer parameter is a pointed to a timer control structure.

●

The milliseconds parameter is the duration of the timer measured in milliseconds.

The repeat parameter is whether or not the timer will restart once it has reached zero.

Includes:

• osapi.h

See also:

Page 343

• Timers and time

• os_timer_disarm

• os_timer_setfn

os_timer_disarm
Disarm/Cancel a previously armed timer.

void os_timer_disarm(os_timer_t *pTimer)

Stop a previously started timer which was started by a call to os_timer_arm().

The pTimer parameter is a pointer to a timer control structure.

Includes:

• osapi.h

See also:

• Timers and time

• os_timer_arm

• os_timer_setfn

os_timer_setfn
Define a function to be called when the timer fires

void os_timer_setfn(
os_timer_t *pTimer,
os_timer_func_t *pFunction,
void *pArg)

Define the callback function that will be called when the timer reaches zero.

The pTimer parameters is a pointer to the timer control structure.

The pFunction parameters is a pointer to the callback function.

The pArg parameter is a value that will be passed into the called back function.

The callback function should have the signature:

void (*functionName)(void *pArg)

The pArg parameter is the value registered with the callback function.

Includes:

• osapi.h

See also:

• Timers and time

• os_timer_arm

• os_timer_disarm

Page 344

system_timer_reinit
Used to set a micro second timer

os_timer_arm_us
Enable a micro second timer

hw_timer_init
Initialize a hardware timer

hw_timer_arm
Set the trigger delay

hw_timer_set_func
Set the timer callback

System Functions

system_restore
Reset some system settings to defaults.

Includes

• ESP32 – <esp_system.h>

system_restart
Restart the system.

void system_restart()

Includes

• ESP32 – <esp_system.h>

system_init_done_cb
Register a function to be called when system initialization is complete

void system_init_done_cb(init_done_cb_t callbackFunction)

Page 345

This function is designed only be called in user_init(). It will register a function to be
called one time after the ESP8266 has been initialized. The init_done_cb_t defines a
function:

void (*functionName)(void)

Includes:

• user_interface.h

See also:

• Custom programs

system_get_chip_id
Get the id of the chip

long system_get_chip_id()

For example: 0xf94322

system_get_vdd33
Measure voltage

Unknown … but related to analog to digital conversion.

See also:

• Analog to digital conversion
• system_adc_read

system_adc_read
Read the A/D converter value.

uint16 system_adc_read()

Read the value of the analog to digital converter. The granularity is 1024 discrete steps.

See also:

• Analog to digital conversion

system_deep_sleep
Puts the device to sleep for a period of time.

void system_deep_sleep(uint32 microseconds)

Includes

• ESP32 – <esp_system.h>

Page 346

system_deep_sleep_set_option
Define what the chip will do when it next wakes up.

bool system_deep_sleep_set_option(uint8 option)

system_phys_set_rfoption
Enable the RF after waking up from a sleep (or not)

system_phys_set_max_tpw
Set the maximum transmission power

system_phys_set_tpw_via_vdd33
Set the transmission power as a function of voltage

system_set_os_print
Turn on or off logging.

void system_set_os_print(unint8 onOff)

A value of 0 switches it off while a value of 1 switches it on. It was initially thought that
this controlled OS level logging however it seems to control all logging via os_printf().

Includes:

• user_interface.h

See also:

• os_printf
• os_install_putc1
• Logging to UART1

system_print_meminfo
Print memory information

void system_print_meminfo()

Memory information for diagnostics is written to the output stream which is commonly
UART1. The format of the data looks as follows:

data : 0x3ffe8000 ~ 0x3ffe853c, len: 1340
rodata: 0x3ffe8540 ~ 0x3ffe8af0, len: 1456
bss : 0x3ffe8af0 ~ 0x3fff1c18, len: 37160
heap : 0x3fff1c18 ~ 0x3fffc000, len: 41960

Page 347

The .data section is where global and static local initialized variables are kept.

The .rodata section is where read-only global and static data is kept.

The .bss is where un-initialized global and local static data is kept.

The .heap is where the heap of the program can be found.

See also:

• Wikipedia – .bss
• Wikipedia – Data segment

system_show_malloc
Debug potential memory leak issues.

void system_show_malloc()

This API should also be enabled by explicitly defining MEMLEAK_DEBUG.

The documentation on this function in the SDK programming guide provides a number
of warnings and caveats that are not yet fully understood so use with caution.

system_get_free_heap_size
Get the size of the available memory heap

int system_get_free_heap_size()

For example "40544".

Includes:

• ESP32 – <esp_system.h>

See also:

• os_malloc
• os_free

system_os_task
Setup a task for execution at a later time.

bool system_os_task(os_task_t task,
uint8 priority,
os_event_t *queue,
uint queueLength)

The "os_task_t" is a pointer to a task handler function which has the signature:

void (*functionName)(os_event_t *event)

This function is defined to be a task handler that will receive all the different post
notifications of the same priority level.

The os_event_t is a structure which contains:

Page 348

https://en.wikipedia.org/wiki/Data_segment
https://en.wikipedia.org/wiki/.bss

• os_signal_t signal

• os_param_t param

Both of these are unsigned 32bit integers.

The priority field is the priority of the task request. Three values are defined:

• USER_TASK_PRIO_0

• USER_TASK_PRIO_1

• USER_TASK_PRIO_2

The return is true on success and false on failure.

Includes:

• user_interface.h

See also:

• ESP8266 Task handling
• system_os_post

system_os_post
Post a message to a task.

bool system_os_post(uint8 priority,
os_signal_t signal,
os_param_t parameter)

Post a message to a task. The task will not run immediately but will run as soon as it
can.

The priority field is the priority of the task request. Three values are defined –
USER_TASK_PRIO_0, USER_TASK_PRIO_1 and USER_TASK_PRIO_2.

The signal parameter is used by the task handler to determine who should process the
signal. It is actually a uint32_t.

The parameter parameter is used to pass in optional data to the handler.

The return is true on success and false on failure.

Includes:

• user_interface.h

See also:

• ESP8266 Task handling
• system_os_task

Page 349

system_get_time
Get the system time. This is measured in microseconds since last device startup.

uint32 system_get_time()

This timer will roll over after 71 minutes.

Includes:

• ESP32 – <esp_system.h>

See also:

• Timers and time

system_get_rtc_time
Get the real time clock cycles.

uint32 system_get_rtc_time()

Retrieve the number of real-time clock cycles. For example, if the value returned by
system_rtc_clock_cali_proc() is 5.75µS then if the system_get_rtc_time() returns
100, then 575µS of wall clock time has passed since the clock was started.

Includes:

• ESP32 – <esp_system.h>

system_rtc_clock_cali_proc
Clock calibration.

uint32 system_rtc_clock_cali_proc(void)

Retrieve the real time clock calibration. This is the wall clock duration of a clock cycle
measured in micro seconds. The 16 bit number returned has bits 11-0 representing the
value after the decimal point. We can multiply the value returned here against the
number of cycles since a previous restart and determine an elapsed wall clock value.

system_rtc_mem_write
Storage space for saving data during a deep sleep in RTC storage.

Includes:

• ESP32 – <esp_system.h>

Page 350

system_rtc_mem_read
Read data from RTC available storage.

Includes:

• ESP32 – <esp_system.h>

system_uart_swap
Swap serial UARTs.

When an ESP8266 starts up, it uses certain pins for UART0 control. Specifically, it
needs pins for the functions TX, RX, CTS and RTS. By calling this function, the
physical pins used for UART0 are switched around.

Function Default Swapped

U0TXD U0TXD MTDO

U0RXD U0RXD MTCK

U0CTS MTCK U0RXD

U0RTS MTDO U0TXD

system_uart_de_swap
Go back to original UART.

system_get_boot_version
The version of the boot loader.

uint8 system_get_boot_version()

The current value returned through testing of my devices is "5".

system_get_userbin_addr
Get the address of user bin

uint32 system_get_userbin_addr()

The current value returned on my devices is 0x0.

system_get_boot_mode
Get the current boot mode

uint8 system_get_boot_mode()

Page 351

The return value indicates the current boot mode and will be one of:

• SYS_BOOT_ENHANCE_MODE – 0

• SYS_BOOT_NORMAL_MODE – 1

On my devices, the value being returned is "0".

system_restart_enhance
Restarts the system in enhanced boot mode

system_update_cpu_freq
Set the CPU frequency

void system_update_cpu_freq(int freq)

Set the CPU frequency. Either 80 or 160.

system_get_cpu_freq
Get the current CPU frequency

int system_get_cpu_freq()

Returns the CPU frequency in MHz. The value will either be 80 or 160.

system_get_flash_size_map
Get current flash size and map

enum flash_size_map system_get_flash_size_map()

The value returned is an enum which has the following definitions:

• FLASH_SIZE_4M_MAP_256_256

• FLASH_SIZE_2M

• FLASH_SIZE_8M_MAP_512_512

• FLASH_SIZE_16M_MAP_512_512

• FLASH_SIZE_32M_MAP_512_512

• FLASH_SIZE_16M_MAP_1024_1024

• FLASH_SIZE_32M_MAP_1024_1024

See also:

• Loading a program into the ESP8266

Page 352

system_get_rst_info
Information about the current startup.

struct rst_info* system_get_rst_info()

Retrieve information about the current device startup.

Includes:

• user_interface.h

See also:

• Exception handling
• struct rst_info

system_get_sdk_version()
Return the version of the SDK

char *system_get_sdkVersion()

For example "1.1.1".

Includes:

• ESP32 – Include <esp_system.h>

system_soft_wdt_feed
Feed the software watchdog.

void system_soft_wdt_feed()

Feed the software watchdog. The function is only of value when the software watchdog
is enabled. If we need to perform looping within our code, we need to call this function
periodically so that we don't starve the WiFi runtime. The motif here is starve and food
and hence the notion of a watchdog timer that checks that we don't spend too long
away from WiFi … so we must feed the dog. Interesting metaphors.

However … experiments are showing that it doesn't seem to actually DO anything. The
mystery of its purpose continues. See: http://bbs.espressif.com/viewtopic.php?f=7&t=1055

system_soft_wdt_stop
Disable the software watchdog.

void system_soft_wdt_stop()

Stop the software watchdog. It is recommended not to stop this timer for too long (8
seconds or less) otherwise the hardware watchdog will force a reset.

Page 353

http://bbs.espressif.com/viewtopic.php?f=7&t=1055

See also:

• Watchdog timer

system_soft_wdt_restart
Restart the software watchdog.

void system_soft_wdt_restart()

Restart the software watchdog following a previous call to stop it.

See also:

• Watchdog timer

os_memset
Set the values of memory

void os_memset(void *pBuffer, int value, size_t size)

Set the memory pointed to by pBuffer to the value for size bytes.

Includes:

• osapi.h

See also:

• Working with memory
• os_memcpy

os_memcmp
Compare two regions of memory.

int os_memcmp(uint8 *ptr1, uint8 *ptr2, int size)

Compare two regions of memory. The return is 0 if they are equal.

Includes:

• osapi.h

os_memcpy
Copy the values of memory.

void os_memcpy(void *destination, void *source, size_t size)

Copy the memory from the buffer pointed to by source to the buffer pointed to by
destination for the number of bytes specified by size.

Includes:

Page 354

• osapi.h

See also:

• Working with memory
• os_memset

os_malloc
Allocate storage from the heap.

void *malloc(size_t size)

Allocate size bytes from the heap and return a pointer to the allocated storage.

Includes:

• mem.h

See also:

• Working with memory
• os_zalloc
• os_free

os_calloc
Allocate storage for a set of elements.

void *calloc(size_t num, size_t size)

Here we allocate num instances of size sized objects in contiguous memory.

Includes:

• mem.h

os_realloc
Reallocate a previously obtained chunk of memory with a new size.

void *os_realloc(void *buf, size_t newSize)

Includes:

• mem.h

os_zalloc
Allocate storage from the heap and zero its values.

void *os_zalloc(size_t size)

Allocate size bytes from the heap and return a pointer to the allocated storage. Before
returning, the storage area is zeroed.

Page 355

Includes:

• mem.h

See also:

• Working with memory
• os_malloc
• os_free

os_free
Release previously allocated storage back to the heap.

void os_free(void *pBuffer)

Release the storage previously allocated by os_malloc() or os_zalloc() back to the
heap.

Includes:

• mem.h

See also:

• Working with memory
• os_malloc
• os_zalloc

os_bzero
Set the values of memory to zero.

void os_bzero(void *pBuffer, size_t size)

Sets the data pointer to by pBuffer to zero for size bytes.

Includes:

• osapi.h

See also:

• Working with memory

os_delay_us
Delay for microseconds.

void os_delay_us(uint16 us)

Delay for a maximum interval of 65535 microseconds.

Includes:

• osapi.h

Page 356

See also:

• Timers and time
• system_set_os_print

os_printf
Print a string to UART.

void os_printf(char *format, …)

The format flags that are known to work include:

• %d – display an integer

• %ld – display a long integer

• %lu – display a long unsigned integer

• %x – display as a hex number

• %s – display as a string

• "\n" – display a newline (includes a prefixed carriage return)

Note that there is no %f to print a float or double.

The output text is sent to the function registered with os_install_putc1(). By default,
this is UART0 but can be changed to UART1 by setting the uart1_write_char()
function.

Includes:

• osapi.h

See also:

• Debugging
• os_install_putc1
• system_set_os_print

os_install_putc1
Register a function print a character

void os_install_putc1(void (*pFunc)(char c));

Register a function that will be called by output functions such as os_printf() that will
log output. For example, this can be used to write to the serial ports. When a call is
made to the supplied uart_init() method, the writing function is set to write to UART1.

Includes:

• osapi.h

See also:

Page 357

• os_printf
• system_set_os_print

os_random
unsigned long os_random()

Includes:

• osapi.h

os_get_random
int os_get_random(unsigned char *buf, size_t len)

Includes:

• osapi.h

os_strlen
Get the length of a string.

int os_strlen(char *string)

Return the length of the null terminated string.

Includes:

• osapi.h

os_strcat
Concatenate two strings together.

char *os_strcat(char *str1, char *str2)

Concatenate the null terminated sting pointed to by str1 with the string pointed to by
str2 and store the result at str1.

Includes:

• osapi.h

os_strchr
Includes:

• osapi.h

Page 358

os_strcmp
Compare two strings.

int os_strcmp(char *str1, char *str2)

Compare the null terminated string pointed to by str1 with the null terminated string
pointed to by str2. If str1 < str2 then the return is < 0. If str1 > str2 then the return is
> 0 otherwise they are equal and the return is 0.

Includes:

• osapi.h

os_strcpy
Copy one string to another.

char *os_strcpy(char *dest, char *src)

Copy the null terminated string pointed to by src to the memory located at dest.

Includes:

• osapi.h

os_strncmp
Includes:

• osapi.h

os_strncpy
Copy one string to another but be sensitive to the amount of memory available in the
target buffer.

char *os_strncpy(char *dest, char *source, size_t sizeOfDest)

Understand that the resulting string in dest may not be null terminated.

Includes:

• osapi.h

os_sprintf
sprintf(char * buffer, char *format, ...)

The format is not as rich as normal sprintf() in a C library. For example, no float or
double support.

Page 359

Includes:

• osapi.h

os_strstr
Includes:

• osapi.h

SPI Flash
The SPI Flash apis allow us to read, write and erase sectors contained within flash
memory. Note that there is a specific document from Espressif that covers the SPI
Flash functions exclusively.

spi_flash_get_id
Ge the ID info of SPI flash

uint32 spi_flash_get_id(void)

This is a bit encoded value that represents information about the flash chip being used
in conjunction with the ESP8266.

The esptool also includes a command (flash_id) that can be used to retrieve and display
the flash information.

Includes:

• spi_flash.h

See also:

• esptool.py

spi_flash_erase_sector
Erase a flash sector. Each sector is 4k in size.

SpiFlashOpResult spi_flasg_erase_sector(uint16 sec)

The sec parameter is the sector number (a sector is 4096 bytes in size).

Includes:

• spi_flash.h

See also:

Page 360

spi_flash_read
Read data from flash

SpiFlashOpResult spi_flash_read(uint32 src_addr, uint32 des_addr, uint32 size)

The src_addr parameter is the address in flash that will be read. The des_addr is the
address in memory which will be written. The size parameter is the size of data to be
read.

Includes:

• spi_flash.h

See also:

spi_flash_set_read_func
void spi_flash_set_read_func(user_spi_flash_read read)

Includes:

• spi_flash.h

See also:

system_param_save_with_protect
Memory saving

bool system_param_save_with_protect(uint16 start_sec, void *param, uint16 len)

Includes:

• spi_flash.h

See also:

spi_flash_write
Write data to flash

SpiFlashOpResult spi_flash_write(uint32 destAddr, uint32 *srcAddr, uint32 size)

The destAddr is the address in flash which is to be written. The srcAddr is the source
address in memory from where the new data is to be taken. The size parameter is the
size of the data to be written.

Includes:

• spi_flash.h

See also:

Page 361

system_param_load
Read data saved with flash protection

bool system_param_load(uint16 start_sec, uint16 offset, void *param, uint16 len)

Includes:

• spi_flash.h

See also:

WiFi – ESP-IDF
The Wifi function provide access to the Wifi capabilities of the device.

esp_wifi_clear_fast_connect
Not implemented.

esp_err_t esp_wifi_clear_fast_connect()

esp_wifi_connect
Connect to an access point.

esp_err_t esp_wifi_connect()

Prior to calling this function we should have:

• Initialized WiFi – esp_wifi_init()

• Set our mode to be either a station or station+ap – esp_wifi_set_mode()

• Set our desired access point connection information – esp_wifi_set_config()

• Started the WiFi subsystem – esp_wifi_start()

We can disconnect from an access point by calling esp_wifi_disconnect().

See also:

• esp_wifi_init

• esp_wifi_set_mode

• esp_wifi_set_config

• esp_wifi_start

• esp_wifi_disconnect

esp_wifi_deinit
Release the ESP32 WiFi environment.

esp_err_t esp_wifi_deinit()

Page 362

esp_wifi_disconnect
Disconnect from an access point.

esp_err_t esp_wifi_disconnect()

We assume that we have previously connected to an access point using
esp_wifi_connect().

See also:

• esp_wifi_connect

esp_wifi_free_station_list
esp_err_t esp_wifi_free_station_list()

See also:

• esp_wifi_get_station_list

esp_wifi_get_ap_list
Retrieve the access points found in a previous scan.

esp_err_t esp_wifi_get_ap_list(uint16_t *number, wifi_ap_list_t *apList);

The apList is a contiguous chunk of storage capable of holding objects of type
wifi_ap_list_t. The number of such records is the initial value of the number
parameter. On return, the actual number of items will be updated. A wifi_ap_list_t
record contains:

uint8_t bssid[6]

uint8_t ssid[32]

uint8_t primary

wifi_second_chan_t second

int8_t rssi

wifi_auth_mode_t authmode

See also:

• esp_wifi_get_ap_num

esp_wifi_get_ap_num
Retrieve the count of found access points from a previous scan.

esp_err_t esp_wifi_get_ap_num(uint16_t *number)

Retrieve the number of discovered access points from the previous scan. We need to
be careful that the scan has completed before getting the count.

Page 363

See also:

• esp_wifi_get_ap_list

esp_wifi_get_auto_connect
esp_err_t esp_wifi_set_auto_connect(bool *enabled)

esp_wifi_get_bandwidth
esp_err_t esp_wifi_get_bandwidth(wifi_interface_t ifx, wifi_bandwidth_t *bandWidth)

esp_wifi_get_channel
esp_err_t esp_wifi_get_channel(uint8_t *primary, wifi_second_chan_t *second)

esp_wifi_get_config
esp_err_t esp_wifi_get_config(wifi_interface_t ifx, wifi_config_t *conf)

See also:

• esp_wifi_set_config

esp_wifi_get_country
Retrieve the currently configured WiFi country.

esp_err_t esp_wifi_get_country(wifi_country_t *country)

The default WiFi country is China. Allowable values are:

• WIFI_COUNTRY_CN

• WIFI_COUNTRY_JP

• WIFI_COUNTRY_US

• WIFI_COUNTRY_EU

esp_wifi_get_mac
esp_err_t esp_wifi_get_mac(wifi_interface_t ifx, uint8_t mac[6])

esp_wifi_get_mode
Get the WiFi operating mode.

esp_err_t esp_wifi_get_mode(wifi_mode_t *mode)

See also:

Page 364

• esp_wifi_set_mode

esp_wifi_get_promiscuous
esp_err_t esp_wifi_get_promiscuous(uint8_t *enable)

esp_wifi_get_protocol
Get the 802.11 protocol (b/g/n)

esp_err_t esp_wifi_get_protocol(wifi_interface_ tifx, uint8_t *protocolBitmap)

esp_wifi_get_ps
Get the power save type.

esp_err_t esp_wifi_get_ps(wifi_ps_type_ t *type)

esp_wifi_get_station_list
Get the list of stations connected to ESP32 when it is behaving as an access point.

esp_err_t esp_wifi_get_station_list(struct station_info **station)

See also:

• esp_wifi_free_station_list

esp_wifi_init
Initialize the ESP32 WiFi environment.

esp_err_t esp_wifi_init(wifi_init_config_t *config)

This API call should be invoked before all other WiFi related calls. The
wifi_init_config_t contains:

void * event_q

uint8_t rx_ba_win

uint8_t rx_ba_win

uint8_t rx_ba_win

A macro called WIFI_INIT_CONFIG_DEFAULT can be used to initialize the configuration
structure. For example:

wifi_init_config_t config = WIFI_INIT_CONFIG_DEFAULT();
esp_wifi_init(&config);

See also:

• esp_wifi_start

Page 365

esp_wifi_kick_station
Kick all stations or a named station that are connected to the ESP32 when it is behaving
as an access point.

esp_err_t esp_wifi_kick_station(uint16_t aid)

The aid identifies a station. What this means is not yet known. If its value is zero, then
all stations are kicked otherwise just the identified station is kicked.

esp_wifi_reg_rxcb
esp_err_t esp_wifi_reg_rxcb(wifi_interface_t ifx, wifi_rxcb_t fn)

esp_wifi_scan_start
Scan for access points.

esp_err_t esp_wifi_scan_start(wifi_scan_config_t *conf, bool block)

Govern how the scan should be performed. The wifi_scan_config_t contains the
following fields:

char * ssid

uint8_t * bssid

uint8_t channel

bool show_hidden

The block parameter defines whether or not this call blocks until the data is available.

The results of a WiFi scan are stored internally in ESP32 dynamically allocated storage.
The data is returned to us when we call esp_wifi_get_ap_list() which also releases
the internally allocated storage. As such, this should be considered a destructive read.

See also:

• esp_wifi_get_station_list

• esp_wifi_scan_stop

esp_wifi_scan_stop
Stop an access point scan that is in progress.

esp_err_ t esp_wifi_scan_stop()

By calling esp_wifi_scan_start(), we can request that a WiFi scan be performed in the
background. Should we wish to interrupt or stop that activity, this function can be used.

Page 366

See also:

• esp_wifi_scan_start

• esp_wifi_get_station_list

esp_wifi_set_auto_connect
esp_err_t esp_wifi_set_auto_connect(bool enabled)

esp_wifi_set_bandwidth
esp_err_t esp_wifi_set_bandwidth(wifi_interface_t ifx, wifi_bandwidth_t bandWidth)

esp_wifi_set_channel
esp_err_t esp_wifi_set_channel(uint8_t primary, wifi_second_chan_t second)

esp_wifi_set_config
Set the WiFi interface configuration.

esp_err_t esp_wifi_set_config(wifi_interface_t interface, wifi_config_t *conf)

The interface is one of:

• WIFI_IF_STA – The station interface.

• WIFI_IF_AP – The access point interface.

The choice of which interface will be used will be dependent on whether or not we are
being an access point, a station or both. If a station, we will configure the station
interface, if an access point, we will configure the access point interface and if both,
then we will configure both interfaces. We should previously have called
esp_wifi_set_mode().

The wifi_config_t defines properties of the interface. It is a C language union of
wifi_ap_config_t and wifi_sta_config_t.

The wifi_sta_config_t contains:

char ssid[32]

char password[64]

bool bssid_set

uint8_t bssid[6]

An example initialization for this structure might be:

wifi_config_t staConfig = {
 .sta = {

Page 367

 .ssid="<access point name>",
 .password="<password>",
 .bssid_set=false
 }
};

The wifi_ap_config_t contains:

char ssid[32]

char password[64]

uint8_t ssid_len

uint8_t channel

wifi_auth_mode_t authmode

uint8_t ssid_hidden

uint8_t max_connection

uint16_t beacon_interval

If ssid_len is 0, then look for a string termination character in the ssid field. Otherwise
if ssid_len is greater than 0, the value defines the number of bytes in ssid to read for
the ssid value.

The channel is the channel we are using for WiFi.

The authmode indicates how stations can connect. Options include:

• WIFI_AUTH_OPEN

• WIFI_AUTH_WEP

• WIFI_AUTH_WPA_PSK

• WIFI_AUTH_WPA2_PSK

• WIFI_AUTH_WPA_WPA2_PSK

The ssid_hidden is 0 meaning that the SSID is broadcast and can be found.

The max_connection is the maximum number of stations that can connect. The default
is 4.

The beacon_interval is some magic related to WiFi and should have a default value of
100.

An example of initialization of this structure might be:

wifi_config_t apConfig = {
 .ap = {
 .ssid="<access point name>",
 .password="<password>",
 .ssid_len=0,

Page 368

 .channel=0,
 .authmode=WIFI_AUTH_OPEN,
 .ssid_hidden=0,
 .max_connection=4,
 .beacon_interval=100
 }
};

See also:

• esp_wifi_get_config

esp_wifi_set_country
Set the WiFi country.

esp_err_t esp_wifi_set_country(wifi_country_t country)

The default WiFi country is China. Allowable values are:

• WIFI_COUNTRY_CN

• WIFI_COUNTRY_JP

• WIFI_COUNTRY_US

• WIFI_COUNTRY_EU

esp_wifi_set_mac
esp_err_t esp_wifi_set_mac(wifi_interface_t ifx, uint8_t mac[6])

esp_wifi_set_mode
Set the operating mode.

esp_err_t esp_wifi_set_mode(wifi_mode_t mode)

Set the operating WiFi mode. The choices are:

• WIFI_MODE_NULL – No WiFi.

• WIFI_MODE_STA – A station.

• WIFI_MODE_AP – An access point.

• WIFI_MODE_APSTA – Both a station and an access point.

You will also need to call esp_wifi_set_config() to specify the configuration
parameters. If we are being an access point, we will not actually start listening for
stations until after esp_wifi_start() and if we are being a station, we will not connect to
an access point until after a call to esp_wifi_start() and then esp_wifi_connect().

See also:

Page 369

• esp_wifi_get_mode

esp_wifi_set_promiscuous_rx_cb
esp_err_t esp_wifi_set_promiscuous_rx_cb(wifi_promiscuous_cb_t cb)

esp_wifi_set_promiscuous
esp_err_t esp_wifi_set_promiscuous(uint8_t enable)

esp_wifi_set_protocol
Set the 802.11 protocol (b/g/n)

esp_err_t esp_wifi_set_protocol(wifi_interface_ tifx, uint8_t protocolBitmap)

esp_wifi_set_ps
Set the power save type.

esp_err_t esp_wifi_set_ps(wifi_ps_type_t type)

esp_wifi_set_storage
Define where WiFi configuration will be stored.

esp_err_t esp_wifi_set_storage(wifi_storage_t storage)

The options available are:

• WIFI_STORAGE_FLASH – Configuration stored in both flash and RAM. This is the
default.

• WIFI_STORAGE_RAM – Configuration stored in RAM only (not in flash as well).

esp_wifi_set_vendor_ie
esp_err_t esp_wifi_set_vendor_ie(bool enable, wifi_vendor_ie_type_t type,
wifi_vendor_ie_id_t idx, uint8_t *vnd_ie)

esp_wifi_set_vendor_ie_cb
esp_err_t esp_wifi_set_vendor_ie_cb(esp_vendor_ie_cb_t cb, void *ctx)

esp_wifi_start
Start the WiFi subsystem.

esp_err_t esp_wifi_start()

Page 370

Prior to calling this function, we should have called esp_wifi_init() and configured our
mode (esp_wifi_set_mode) and interfaces (esp_wifi_set_config). If we are an access
point, then after calling this function, we will start to accept incoming client connections.

See also:

• esp_wifi_stop

• esp_wifi_init

• esp_wifi_set_mode

esp_wifi_stop
Stop the WiFi subsystem.

esp_err_t esp_wifi_stop()

See also:

• esp_wifi_start

WiFi – ESP8266

wifi_fpm_close

wifi_fpm_do_sleep

wifi_fpm_do_wakeup

wifi_fpm_get_sleep_type

wifi_fpm_open

wifi_fpm_set_sleep_type

wifi_fpm_set_wakeup_cb

wifi_get_channel

wifi_get_ip_info
Retrieve the current IP info about the station.

bool wifi_get_ip_info(
uint8 if_index,
struct ip_info *info)

The if_index parameter defines the interface to retrieve. Two values are defined:

• STATION_IF – 0 – The station interface

• SOFTAP_IF – 1 – The Soft Access Point interface

The info parameter is populated with details of the current ip address, netmask and
gateway.

Page 371

Includes:

• user_interface.h

See also:

• Current IP Address, netmask and gateway
• struct ip_info

wifi_get_macaddr
Get the MAC address.

bool wifi_get_macaddr(uint8 if_index, uint8 *macaddr)

A MAC address is 6 bytes.

Includes:

• user_interface.h

wifi_get_opmode
Get the operating mode of the WiFi

uint8 wifi_get_opmode()

Return the current operating mode of the device.

There are four values defined:

• NULL_MODE – Null mode. (0)

• STATION_MODE – Station mode. (1)

• SOFTAP_MODE – Soft Access Point (AP) mode. (2)

• STATIONAP_MODE – Station + Soft Access Point (AP) mode. (3)

Includes:

• user_interface.h

See also:

• Defining the operating mode
• wifi_get_opmode_default

wifi_get_opmode_default
Get the default operating mode

uint8 wifi_get_opmode_default()

Return the default operating mode of the device following startup.

There are three values defined:

• STATION_MODE – Station mode

Page 372

• SOFTAP_MODE – Soft Access Point (AP) mode

• STATIONAP_MODE – Station + Soft Access Point (AP) mode

Includes:

• user_interface.h

See also:

• Defining the operating mode
• wifi_get_opmode

wifi_get_phy_mode
Get the physical level WiFi mode.

enum phy_mode wifi_get_phys_mode();

This is used to retrieve the IEEE 802.11 network type such a b/g/n.

Includes:

• user_interface.h

See also:

• enum phy_mode

wifi_get_sleep_type
Includes:

• user_interface.h

wifi_get_user_fixed_rate
int wifi_get_user_fixed_rate(uint8 *enable_mask, uint8 *rate)

wifi_get_user_limit_rate_mask
uint8 wifi_get_user_limit_rate_mask()

wifi_set_broadcast_if
bool wifi_set_broadcast_if(uint8 interface)

Includes:

• user_interface.h

See also:

• Broadcast with UDP

wifi_get_broadcast_if
uint8 wifi_get_broadcast_if()

Page 373

Includes:

• user_interface.h

See also:

• Broadcast with UDP

wifi_set_sleep_type
Includes:

• user_interface.h

wifi_promiscuous_enable

wifi_promiscuous_set_mac

wifi_register_rfid_locp_recv_cb

wifi_register_send_pkt_freedom_cb

wifi_register_user_ie_manufacturer_recv_cb

wifi_rfid_locp_recv_close

wifi_rfid_locp_recv_open

wifi_send_pkt_freedom

wifi_set_channel

wifi_set_event_handle_cb
Define a callback function to sense WiFi events.

void wifi_set_event_handler_cb(wifi_event_handler_cb_t callbackFunction)

Registers a function to be called when an event is detected by the WiFi subsystem.
The signature of the registered callback function is:

void (*functionName)(System_Event_t *event)

Includes:

• user_interface.h

See also:

• Handling WiFi events
• System_Event_t

wifi_set_ip_info
Set the interface data for the device.

Page 374

bool wifi_set_ip_info(uint8 if_index, struct ip_info *info)

The if_index parameter defines the interface to retrieve. Two values are defined:

• STATION_IF – 0 – The station interface

• SOFTAP_IF – 1 – The Soft Access Point interface

The info parameter is a pointer to a struct ip_info that contains the values we wish to
set.

Includes:

• user_interface.h

See also:

• Current IP Address, netmask and gateway
• struct ip_info

wifi_set_macaddr
Set the MAC address.

bool wifi_set_macaddr(uint8 if_index, uint8 *macaddr)

A MAC address is 6 bytes.

Includes:

• user_interface.h

wifi_set_opmode
Set the operating mode of the WiFi including saving to flash.

bool wifi_set_opmode(uint8 opmode)

There are three values defined:

• STATION_MODE – Station mode

• SOFTAP_MODE – Soft Access Point (AP) mode

• STATIONAP_MODE – Station + Soft Access Point (AP) mode

Includes:

• user_interface.h

See also:

• Defining the operating mode
• wifi_get_opmode
• wifi_get_opmode_default

wifi_set_opmode_current
Set the operating mode of the WiFi but don't save to flash.

bool wifi_set_opmode_current(uint8 opmode)

Page 375

There are three values defined:

• STATION_MODE – Station mode

• SOFTAP_MODE – Soft Access Point (AP) mode

• STATIONAP_MODE – Station + Soft Access Point (AP) mode

Includes:

• user_interface.h

See also:

• Defining the operating mode
• wifi_get_opmode
• wifi_get_opmode_default

wifi_set_phy_mode
Set the physical level WiFi mode.

bool wifi_set_phy_mode(enum phy_mode mode)

This is used to set the IEEE 802.11 network type such a b/g/n.

Includes:

• user_interface.h

See also:

• enum phy_mode

wifi_set_promiscuous_rx_cb

wifi_set_sleep_type

wifi_set_user_fixed_rate
int wifi_set_user_fixed_rate(uint8 enable_mask, uint8 rate)

The enable mask can be one of:

• FIXED_RATE_MASK_NONE

• FIXED_RATE_MASK_STA

• FIXED_RATE_MASK_AP

• FIXED_RATE_MASK_ALL

The rate can be one of:

• PHY_RATE_6

• PHY_RATE_9

Page 376

• PHY_RATE_12

• PHY_RATE_18

• PHY_RATE_24

• PHY_RATE_36

• PHY_RATE_48

• PHY_RATE_54

wifi_set_user_ie

wifi_set_user_limit_rate_mask
bool wifi_set_user_limit_rate_mask(uint8 enable_mask)

wifi_set_user_rate_limit
bool wifi_set_user_rate_limit(uint8 mode, uint8 ifidx, uint8 max, uint8 min)

wifi_set_user_sup_rate
int wifi_set_user_sup_rate(uint8 min, uint8 max)

• RATE_11B5M

• RATE_11B11M

• RATE_11B1M

• RATE_11B2M

• RATE_11G6M

• RATE_11G12M

• RATE_11G24M

• RATE_11G48M

• RATE_11G54M

• RATE_11G9M

• RATE_11G18M

• RATE_11G36M

wifi_status_led_install
Associate a GPIO pin with the WiFi status LED.

void wifi_status_led_install(
uint8 gpio_id,
uint32 mux_name,
uint8 gpio_func)

Page 377

When WiFi traffic flows, we may wish a status LED to flicker or blink indicating flowing
traffic. This function allows us to specify a GPIO that should be pulsed to indicate WiFi
traffic.

The gpio_id parameter is the numeric pin number.

The mux_name is the name of the multiplexer logical name.

The gpio_func is the function to be enabled for that multiplexer.

Includes:

• user_interface.h

See also:

• wifi_status_led_uninstall

wifi_status_led_uninstall
Disassociate a status LED from a GPIO pin.

void wifi_status_led_uninstall()

Disassociates a previous association setup with a call to wifi_status_led_install().

Includes:

• user_interface.h

See also:

• wifi_status_led_install

wifi_unregister_rfid_locp_recv_cb

wifi_unregister_send_pkt_freedom_cb

wifi_unregister_user_ie_manufacturer_recv_cb

WiFi Station
The following APIs relate to the ESP* device acting as a station and connecting to an
external access point.

wifi_station_ap_change

Change the connection to another access point

bool wifi_station_ap_change(uint newApId)

Includes:

Page 378

• user_interface.h

wifi_station_ap_number_set

Number of stations that will be cached

bool wifi_station_ap_number_set(uint8 ap_number)

Includes:

• user_interface.h

wifi_station_connect

Connect the station to an access point.

bool wifi_station_connect()

If we are already connected to a different access point then we first need to disconnect
from it using wifi_station_disconnect(). There is also an auto connect attribute which
can be used to allow the device to attempt to connect to the last access point seen
when it is powered on. This can be set with the wifi_station_set_auto_connect()
function.

Includes:

• user_interface.h

See also:

• Connecting to an access point

•

wifi_station_dhcpc_start

Start the DHCP client.

bool wifi_station_dhcpc_start()

If DHCP is enabled, then the IP, netmask and gateway will be retrieved from the DHCP
server while if disabled, we will be using static values.

Includes:

• user_interface.h

See also:

• Current IP Address, netmask and gateway

Page 379

• wifi_station_dhcpc_stop

wifi_station_dhcpc_status

Get the DHCP client status

enum dhcp_status wifi_station_dhcpc_status()

One of:

• DHCP_STOPPED

• DHCP_STARTED

Includes:

• user_interface.h

wifi_station_dhcpc_stop

Stop the DHCP client

bool wifi_station_dhcpc_stop()

If DHCP is enabled, then the IP, netmask and gateway will be retrieved from the DHCP
server while if disabled, we will be using static values.

Includes:

• user_interface.h

See also:

• Current IP Address, netmask and gateway

wifi_station_disconnect

Disconnect the station from an access point.

bool wifi_station_disconnect()

We should presume that we have previously connected via a wifi_station_connect().
We can determine our current connection status through
wifi_station_get_connect_status().

The return is true on success and false on an error.

Includes:

Page 380

• user_interface.h

wifi_station_get_ap_info

Get the information of access points cached

uint8 wifi_station_get_ap_info(struct station_config configs[])

Includes:

• user_interface.h

wifi_station_get_auto_connect

Determine whether or not the ESP will auto connect to the last access point on boot.

uint8 wifi_station_get_auto_connect()

Determine whether or not the device will attempt to auto-connect to the last access
point on restart. A value if 0 means it will not while non 0 means it will.

Includes:

• user_interface.h

wifi_station_get_config

Get the current station configuration

bool wifi_station_get_config(struct station_config *config)

Retrieve the current station configuration settings.

Includes:

• user_interface.h

See also:

• Station configuration
• station_config

wifi_station_get_config_default

Page 381

Get the default station configuration

Includes:

• user_interface.h

See also:

• Station configuration

wifi_station_get_connect_status

Get the connection status of the station.

uint8 wifi_station_get_connect_status()

The result is an enum with the following possible values:

Enum name Value

STATION_IDLE 0

STATION_CONNECTING 1

STATION_WRONG_PASSWORD 2

STATION_NO_AP_FOUND 3

STATION_CONNECT_FAIL 4

STATION_GOT_IP 5

Not in station mode 255

Includes:

• user_interface.h

See also:

• WiFi.printDiag

wifi_station_get_current_ap_id

Get the current access point id

uint8 wifi_station_get_current_ap_id()

Includes:

• user_interface.h

Page 382

wifi_station_get_hostname

Get the DHCP hostname of the WiFi device.

char* wifi_station_get_hostname()

Includes:

• user_interface.h

wifi_station_get_reconnect_policy

wifi_station_get_rssi

Get the received signal strength indication (rssi).

sint8 wifi_station_get_rssi()

Get the received signal strength indication (rssi).

Includes:

• user_interface.h

wifi_station_scan

Scan for available access points

bool wifi_station_scan(
struct scan_config *config,
scan_done_cb_t callbackFunction)

We can scan the WiFi frequencies looking for access points. We must be in station
mode in order to execute the command. When the function is executed, we provide a
callback function that will be asynchronously invoked at some time in the future with the
results.

The scan_config structure contains:

• uint8 *ssid

• uint8 *bssid

• uint8 channel

Page 383

• uint8 show_hidden

If we supply this structure, then only access points that match are returned.

The scan_config parameter can be NULL in which case no filtering will be performed and
all access points will be returned.

The scan_done_cb_t is a function with the following structure:

void (*functionName)(void *arg, STATUS status)

The arg parameter is a pointer to a struct bss_info.

It is important to note that the first entry in the chain must be skipped over as it is the
head of the list.

To get the next entry, we can use STAILQ_NEXT(pBssInfoVar, next).

The AUTH_MODE is an enum

Enum name Value

AUTH_OPEN 0

AUTH_WEP 1

AUTH_WPA_PSK 2

AUTH_WPA2_PSK 3

AUTH_WPA_WPA2_PSK 4

STATUS is an enum containing:

Enum name Value

OK 0

FAIL 1

PENDING 2

BUSY 3

CANCEL 4

On success, the function returns true and false on a failure.

The name of this function is peculiar. Given that it appears to locate access points and
not stations, I believe a more appropriate name would have been
wifi_access_point_scan().

Includes:

• user_interface.h

See also:

Page 384

• Scanning for access points
• struct bss_info
• STATUS

wifi_station_set_auto_connect

Set whether or not the ESP will auto connect to the last access point on boot.

bool wifi_station_set_auto_connect(uint8 setValue)

Set whether or not the device will attempt to auto-connect to the last access point on
restart. A value of 0 means it will not while a non 0 value means it will. If called in
user_init(), the setting will be effective immediately. If called elsewhere, the setting
will take effect on next restart.

Includes:

• user_interface.h

wifi_station_set_cert_key

Set certificate and private key for connecting to WPA2-Enterprise access point.

bool wifi_station_set_cert_key(
 uint8 *client_cert, int client_cert_len,
 uint8 *private_key, int private_key_len,
 uint8 *private_key_passwd, int private_key_passwd_len)

wifi_station_clear_cert_key

Release resources and clear status after connecting to a WPA2-Enterprise access
point.

void wifi_station_clear_cert_key(void)

wifi_station_set_config

Set the configuration of the station.

bool wifi_station_set_config(struct station_config *config)

Page 385

This function can only be called when the device mode includes Station support.
Specifically, the details of which access point to interact with are supplied here. The
details are persisted across a restart of the device.

A return value of true indicates success and a value of false indicates failure.

Includes:

• user_interface.h

See also:

• Station configuration
• station_config

wifi_station_set_config_current

Set the configuration of the station but don't save to flash.

bool wifi_station_set_config_current(struct station_config *config)

This function can only be called when the device mode includes Station support.
Specifically, the details of which access point to interact with are supplied here. The
details are not persisted across a restart of the device.

A return value of true indicates success and a value of false indicates failure.

Includes:

• user_interface.h

See also:

• Station configuration
• station_config

•

wifi_station_set_reconnect_policy

What should happen when the ESP gets disconnected from the AP

bool wifi_station_set_reconnect_policy(bool set)

Includes:

• user_interface.h

wifi_station_set_hostname

Page 386

Set the DHCP hostname of the WiFi device.

bool wifi_station_set_hostname(char *name)

Includes:

• user_interface.h

WiFi SoftAP
The following APIs relate to the ESP* device acting as an access point to external
stations.

wifi_softap_dhcps_start

Start the DHCP server service.

bool wifi_softap_dhcps_start()

Start the DHCP server service inside the device.

Includes:

• user_interface.h

See also:

• The DHCP server
• wifi_softap_dhcps_stop
• wifi_softap_dhcps_offer_option

wifi_softap_dhcps_status

Return the status of the DHCP server service.

enum dhcp_status wifi_softap_dhcps_status()

Retrieve the status of the DHCP server service. The returned value will be one of:

• DHCP_STOPPED

• DHCP_STARTED

Includes:

• user_interface.h

See also:

• The DHCP server
• wifi_softap_dhcps_stop
• wifi_softap_dhcps_offer_option

Page 387

wifi_softap_dhcps_stop

Stop the DHCP server service.

bool wifi_softap_dhcps_stop()

Stop the DHCP server service inside the device.

Includes:

• user_interface.h

See also:

• The DHCP server
• wifi_softap_dhcps_offer_option

wifi_softap_free_station_info

Release the data associated with a struct station_info.

void wifi_softap_free_station_info()

Following a call to wifi_softap_get_station_info() we may have data returned to us.
The data was allocated by the OS and we must return it with this function call. Note that
this function does not take in the data that was returned.

Includes:

• user_interface.h

See also:

• Being an access point

•

wifi_softap_get_config

Retrieve the current softAP configuration details.

bool wifi_softap_get_config(struct softap_config *pConfig)

When called, the struct softap_config pointed to be pConfig will be filled in with the
details of the current softAP configuration. The details returned are those actually in
use and may differ from the ones saved for default.

A value of 1 will be returned on success and 0 otherwise.

Includes:

• user_interface.h

Page 388

See also:

• struct softap_config
• wifi_softap_get_config_default
• wifi_softap_set_config_current

wifi_softap_get_config_default

Retrieve the default softAP configuration details.

bool wifi_softap_get_config_default(struct softap_config *config)

When called, the struct softap_config pointed to be pConfig will be filled in with the
details of the default softAP configuration. The details returned are those used at boot
and may be different from the ones currently in use.

A value of 1 will be returned on success and 0 otherwise.

Includes:

• user_interface.h

See also:

• struct softap_config
• wifi_softap_set_config_current

wifi_softap_get_dhcps_lease

wifi_softap_get_dhcps_lease_time

Get the DHCP server lease time value.

uint32 wifi_softap_get_dhcps_lease_time()

Return the number of minutes that a server DHCP lease IP address will be held.

wifi_softap_get_station_info

Return the details of all connected stations.

struct station_info *wifi_softap_get_station_info()

The return data is a linked list of struct station_info data structures.

Page 389

Includes:

• user_interface.h

See also:

• Being an access point
• wifi_softap_get_station_num

wifi_softap_get_station_num

Return the count of stations currently connected.

uint8 wifi_softap_get_station_num()

Returns the number of stations currently connected. The maximum number of
connections on an ESP8266 is 4 but we can reduce this in the softAP configuration if
needed.

Includes:

• user_interface.h

See also:

• Being an access point

wifi_softap_reset_dhcps_lease_time

Reset the DHCP server lease time to the default value.

bool wifi_softap_reset_dhcps_lease_time()

Reset the DHCP server lease time to the default value which is currently 120 minutes.

wifi_softap_set_config

Set the current and default softAP configuration.

bool wifi_softap_set_config(struct softap_config *config)

When called, the struct softap_config pointed to be pConfig will be used as the
details of the default and current softAP configuration.

A value of 1 will be returned on success and 0 otherwise.

Includes:

• user_interface.h

Page 390

See also:

• struct softap_config
• wifi_softap_get_config_default
• wifi_softap_set_config_current

wifi_softap_set_config_current

Set the default softAP configuration.

bool wifi_softap_set_config_current(struct softap_config *config)

When called, the struct softap_config pointed to be pConfig will be used as the
details of the current softAP configuration but will not be saved as default.

Includes:

• user_interface.h

See also:

• struct softap_config
• wifi_softap_get_config_default

•

wifi_softap_set_dhcps_lease

Define the IP address range that will be leased by this DHCP server.

bool wifi_softap_set_dhcps_lease(struct dhcps_lease *pLease)

The pLease parameter is a pointer to a struct dhcps_lease which contains an IP
address range of IP addresses that will be leased by this DHCP server. The difference
between the upper and lower bound of the IP addresses must be 100 or less. This
function will not take effect until the DHCP server is stopped and restarted (assuming it
is already running).

Includes:

• user_interface.h

See also:

• The DHCP server
• wifi_softap_dhcps_stop
• wifi_softap_dhcps_offer_option
• struct dhcps_lease

wifi_softap_set_dhcps_lease_time

Page 391

Set the DHCP server lease time.

bool wifi_softap_set_dhcps_lease_time(uint32 minutes)

Set how long a DHCP IP address lease is good for. the default is 120 minutes. The
parameter is the number of minutes that the lease should be held. It has an allowable
range of 1-2880.

wifi_softap_dhcps_offer_option

Set DHCP server options.

bool wifi_softap_set_dhcps_offer_option(uint8 level, void *optarg)

Currently, the level parameter can only be OFFER_ROUTER with optarg being a bit mask
with values:

• 0b0 – Disable router information.

• 0b1 – Enable router information.

Includes:

• user_interface.h

See also:

• wifi_softap_dhcps_stop

WiFi WPS

wifi_wps_enable

bool wifi_wps_enable(WPS_TYPE_t wps_type)

The type parameter can be one of the following:

• WPS_TYPE_DISABLE – Unsupported

• WPS_TYPE_PBC – Push Button Configuration – Supported

• WPS_TYPE_PIN – Unsupported

• WPS_TYPE_DISPLAY – Unsupported

• WPS_TYPE_MAX – Unsupported

See also:

• WiFi Protected Setup – WPS

Page 392

wifi_wps_disable

bool wifi_wps_disable()

See also:

• WiFi Protected Setup – WPS

wifi_wps_start

bool wifi_wps_start()

See also:

• WiFi Protected Setup – WPS

wifi_set_wps_cb

bool wifi_set_wps_cb(wps_st_cb_t callback)

The signature of the callback function is:

void (*functionName)(int status)

The status parameter will be one of:

• WPS_CB_ST_SUCCESS

• WPS_CB_ST_FAILED

• WPS_CB_ST_TIMEOUT

See also:

• WiFi Protected Setup – WPS

Upgrade APIs

system_upgrade_flag_check
Retrieve the upgrade status flag.

uint8 system_upgrade_flag_check()

The returned value will be one of:

• UPGRADE_FLAG_IDLE

• UPGRADE_FLAG_START

• UPGRADE_FLAG_FINISH

Page 393

system_upgrade_flag_set
Set the upgrade status flag.

void system_upgrade_flag_set(uint8 flag)

The flag can be one of:

• UPGRADE_FLAG_IDLE

• UPGRADE_FLAG_START

• UPGRADE_FLAG_FINISH

system_upgrade_reboot
Reboot the ESP8266 and run the new firmware.

void system_upgrade_reboot()

system_upgrade_start
Start downloading the new firmware from the server.

bool system_upgrade_start(struct upgrade_server_info *server)

The server parameter is a structure ...

system_upgrade_userbin_check
Determine which of the two possible firmware images can be upgraded.

uint8 system_upgrade_userbin_check()

The result will be either UPGRADE_FW_BIN1 or UPGRADE_FW_BIN2.

Sniffer APIs

wifi_promiscuous_enable
void wifi_promiscuous_enable(uint8 promiscuous)

wifi_promiscuous_set_mac
void wifi_promiscuous_set_mac(const uint8_t *address)

wifi_promiscuous_rx_cb
void wifi_promiscuous_rx_cb(wifi_promiscuous_cb_t cb)

Page 394

wifi_get_channel

wifi_set_channel

Smart config APIs

smartconfig_start
bool smartconfig_start(sc_callback_t cb, uint8 log)

smartconfig_stop
bool smartconfig_stop(void)

SNTP API
Handle Simple Network Time Protocol request.

sntp_setserver
Set the address of an SNTP server.

void sntp_serverserver(unsigned char index, ip_addr_t *addr)

Set the address of one of the three possible SNTP servers to be used.

The index parameter must be either 0, 1 or 2 and specifies which of the SNTP server
slots is to be set.

The addr parameter is the IP address of the SNTP server to be recorded.

Includes:

• sntp.h

See also:

• Working with SNTP

sntp_getserver
Retrieve the IP address of the SNTP server.

ip_addr_t sntp_getserver(unsigned char index)

Retrieve the IP address of a previously registered SNTP server.

The index parameter is the index of the SNTP server to be retrieved. It may be either 0,
1 or 2.

Page 395

Includes:

• sntp.h

See also:

• Working with SNTP

sntp_setservername
Set the hostname of a target SNTP server.

void sntp_setservername(unsigned char index, char *server)

Specify an SNTP server by its hostname.

The index parameter is the index of an SNTP server to be set. It may be either 0, 1 or
2.

The server parameter is a NULL terminated string that names the host that is an SNTP
server.

See also:

• Working with SNTP

sntp_getservername
Get the hostname of a target SNTP server.

char *sntp_setservername(unsigned char index)

Retrieve the hostname of a specific SNTP server that was previously registered.

The index parameter is the index of an SNTP server that was previously set. It may be
either 0, 1 or 2.

The return from this function is a NULL terminated string.

Includes:

• sntp.h

See also:

• Working with SNTP

sntp_init
void sntp_init()

Initialize the SNTP functions.

Includes:

• sntp.h

Page 396

See also:

• Working with SNTP

sntp_stop
void sntp_stop()

Includes:

• sntp.h

See also:

• Working with SNTP

sntp_get_current_timestamp
Get the current timestamp as an unsigned 32 bit value representing the number of
seconds since January 1st 1970 UTC.

uint32 sntp_get_current_timestamp()

Includes:

• sntp.h

See also:

• Working with SNTP

sntp_get_real_time
char *sntp_get_real_time(long t)

????

Includes:

• sntp.h

See also:

• Working with SNTP

sntp_set_timezone
Set the current local timezone.

bool sntp_set_timezone(sint8 timezone)

Invoking this function declares our local timezone as a signed offset in hours from UTC.
It should only be called when the SNTP functions are not running as for example after a
call to sntp_stop().

Page 397

The timezone parameter is a time zone in the range -11 to 13.

The return value is true on success and false otherwise.

Includes:

• sntp.h

See also:

• Working with SNTP

sntp_get_timezone
Get the current timezone.

sint8 sntp_get_timezone()

Retrieve the current value for the timezone as previously set with a call to
sntp_set_timezone().

Includes:

• sntp.h

See also:

• Working with SNTP

Generic TCP/UDP APIs

espconn_delete
Delete a control block structure.

sint8 espconn_delete(struct espconn *espconn)

The device maintains data and storage for each conversation (TCP and UDP). When
these conversations are finished and we no longer are going to communicate with the
partners, we can indicate that by calling this function which will release the internal
storage. It is anticipated that failure to do this will result in memory leaks.

Return code of 0 on success otherwise the code indicates the error:

• ESPCONN_ARG – Illegal argument

This API undoes the effect of espconn_create or espconn_accept.

See also:

• UDP
• espconn_create
• espconn_accept

Page 398

espconn_dns_setserver
Set the default DNS server.

void espconn_dns_setserver(char numdns, ip_addr_t *dnsservers)

The numdns is the number of DNS servers supplied which must be 1 or 2. No more than
2 DNS servers may be supplied. This function should not be called if DHCP is being
used.

The dnsservers parameter is an array of 1 or 2 IP addresses.

See also:

• Name Service

espconn_gethostbyname
err_t espconn_gethostbyname(struct espconn *espconn,

const char *hostname,
ip_addr_t *addr,
dns_found_callback found)

The parameters are:

• espconn – Care and understanding are needed when examining this parameter.
Since it is a struct espconn, we would immediately think it has something to do
with communications and is somehow used to control the
espconn_gethostbyname() function. The answer is much much simpler. It is
ignored. Yup … the operation of gethostbyname() does not depend on this
parameter at all. It however does show up in one more place. When the
callback function is invoked as a result of having finished the gethostbyname …
the arg parameter to the callback is set to be the value of this espconn parameter.
So in reality, it would have been perhaps better to define the data type of this first
parameter to be a "void *" as basically that is how it used.

• hostname – The name of the host to lookup.

• addr – The address of a storage area where the IP address will be placed only if
it has recently been queried before and is held in cache. The address found here
is valid if ESPCONN_OK is returned.

• found – A callback function that will be invoked when the address has been
resolved. The callback will be invoked only if ESPCONN_INPROGRESS is returned.

The dns_found_callback is a function with the following signature:

void (*functionName)(const char *name, ip_addr_t *ipAddr, void *arg)

where the arg parameter is a pointer to a struct espconn, the name is the hostname
being sought and the ipAddr is the address of the IP address used to store the result.

Page 399

When a host name cannot be found, the ipAddr is returned as NULL … however, your
DNS provider may choose to provide an IP address of a search engine and hence you'll
get an address back … but not the one to the host you expected!!

Return code of 0 on success otherwise the code indicates the error:

• ESPCONN_OK – Succeeded.

• ESPCONN_INPROGRESS – Indicates that we don't have a cache and we need to
lookup.

• ESPCONN_ARG – Illegal argument.

See also:

• Name Service
• lwIP – DNS

espconn_port
uint32 espconn_port()

espconn_regist_sentcb
Register a callback function that will be called when data has been sent.

sint8 espconn_regist_sentcb(
struct espconn *espconn,
espconn_sent_callback sent_cb)

The format of the callback function is:

void (*functionName)(void *arg)

The arg parameter is a pointer to a struct espconn that describes the connection.

See also:

• Sending and receiving TCP data
• struct espconn

espconn_regist_recvcb
Register a function to be called when data becomes available on the TCP connection or
UDP datagram.

sint8 espconn_regist_recvcb(
struct espconn *espconn,
espconn_recv_callback recv_cb)

The format of the callback function is:

void (*functionName)(void *arg, char *pData, unsigned short len)

Page 400

http://lwip.wikia.com/wiki/DNS

Where args is a pointer to a struct espconn, pData is a pointer to the data received and
len is the length of the data received.

Return code of 0 on success otherwise the code indicates the error:

• ESPCONN_ARG – Illegal argument

See also:

• Sending and receiving TCP data
• UDP
• espconn_create
• struct espconn

espconn_send
Send data through the connection to the partner.

sint8 espconn_send(
struct espconn *pEspconn,
uint8 *pBuffer,
uint16 length)

The pEspconn parameter identifies the connection through which to transmit the data.

The pBuffer parameter points to a data buffer to be transmitted.

The length parameter supplies the length of the data in bytes that is to be transmitted.

Note that the data need not be transmitted immediately. We can be notified when the
data has been transmitted by a callback to the function registered with
espconn_regist_sentcb().

Return code of 0 on success otherwise the code indicates the error:

• ESPCONN_MEM (-1) – Out of memory

• ESPCONN_ARG (-12) – Illegal argument

See also:

• Sending and receiving TCP data
• UDP
• espconn_regist_sentcb

espconn_sendto
sin16 espconn_sendto(struct espconn *espconn, uint8 *psent, uint16 length)

ipaddr_addr
Build a TCP/IP address from a dotted decimal string representation.

uint32 ipaddr_addr(char *addressString)

Page 401

Return an IP address (4 byte) value from a dotted decimal string representation
supplied in the addressString parameter. Note that the uint32 type is not assignable to
the addresses in an esp_tcp or esp_udp structure. Instead we have to use a local
variable and then copy the content. For example:

uint32 addr = ipaddr_addr(server);
memcpy(m_tcp.remote_ip, &addr, 4);

IP4_ADDR
Set the value of a variable to an IP address from its decimal representation.

IP4_ADDR(struct ip_addr * addr, a, b, c, d)

The addr parameter is a pointer to storage to hold an IP address. This may be an
instance of struct ip_addr, a uint32, uint8[4]. It must be cast to a pointer to a struct
ip_addr if not already of that type.

The parameters a, b, c and d are the parts of an IP address if it were written in dotted
decimal notation.

Includes:

• ip_addr.h

See also:

• struct ip_addr

IP2STR
Generate four int values used in a os_printf statement

IP2STR(ip_addr_t *address)

This is a macro which takes a pointer to an IP address and returns four comma
separated decimal values representing the 4 bytes of an IP address. This is commonly
used in code such as:

os_printf("%d.%d.%d.%d\n", IP2STR(&addr));

TCP APIs

espconn_abort
Force the termination of a TCP/IP connection.

sint8 espconn_abort(struct espconn *espconn)

This API should not be called in any espconn callback functions.

A return code of 0 indicates success.

Page 402

espconn_accept
Listen for an incoming TCP connection.

sint8 espconn_accept(struct espconn *espconn)

After calling this function, the ESP8266 starts listening for incoming connections. Any
callback functions registered with espconn_regist_connectcb() will be invoked when
new connections arrive.

Return code of 0 on success otherwise the code indicates the error:

• ESPCONN_MEM – Out of memory

• ESPCONN_ISCONN – Already connected

• ESPCONN_ARG – Illegal argument

Note: After some thought, I think I really don't like the name of this. What this function
does is cause the ESP8266 to start listening on a local port for new incoming requests.
Essentially making the ESP8266 a server. When we study the sockets API, we find that
the equivalent function call to achieve this task is called listen. So my
suggested/recommended new name for this function would be espconn_listen.

So where then did the accept name come from? The answer is that in sockets API there
is a partner function called accept. When executed against a socket that has previously
had listen called against it, what it does is block until a partner actually attempts to
connect. In the ESP8266, there is no equivalent. Instead, after espconn_accept is called,
the ESP8266 immediately starts listening and when a partner connects, we wake up in
the connect callback. So ... is espconn_accept a sockets listen() call or a sockets
accept() call? My mind says that it is MUCH closer to a listen() call.

See also:

• TCP
• espconn_regist_connectcb
• espconn_delete

espconn_get_connection_info
sint8 espconn_get_connection_info(

struct espconn *espconn,
remot_info **pcon_info,
uint8 typeFlags)

The espconn is a pointer to the TCP control block.

The pcon_info parameter is the partner info.

The typeFlags defines what kind of partner we are getting information about:

Page 403

• 0 – regular partner

• 1 – SSL partner

Return code of 0 on success otherwise the code indicates the error:

• ESPCONN_ARG – Illegal argument

espconn_connect
Connect to a remote application using TCP.

sint8 espconn_connect(struct espconn *espconn)

Return code of 0 on success otherwise the code indicates the error:

• ESPCONN_RTE (-4) – Routing problem

• ESPCONN_MEM (-1) – Out of memory

• ESPCONN_ISCONN (-15) – Already connected

• ESPCONN_ARG (-12) – Illegal argument

Realize that after making this call, we may still fail to connect. This is an asynchronous
call which will be performed at a later time. If there is a failure at that point, we will find
that the callback registered with espconn_regist_reconcb() will be invoked.

When the connection has been established, any registered callback made with
espconn_regist_connect() will be invoked.

See also:

• TCP
• espconn_disconnect
• espconn_regist_connectcb
• espconn_regist_disconcb
• espconn_regist_reconcb

espconn_disconnect
Disconnect a TCP connection.

sint8 espconn_disconnect(struct espconn *espconn)

Disconnect a TCP connection that was previously formed with espconn_connect() or
espconn_accept(). When the disconnect has succeeded, we will see a callback to the
function registered with espconn_regist_disconcb().

Return code of 0 on success otherwise the code indicates the error:

• ESPCONN_ARG – Illegal argument

See also:

Page 404

• TCP
• espconn_accept
• espconn_connect
• espconn_regist_disconcb

espconn_regist_connectcb
Register a function that will be called when a TCP connection is formed.

sint8 espconn_regist_connectcb(
struct espconn *espconn,
espconn_connect_callback connect_cb)

Return code of 0 on success otherwise the code indicates the error:

• ESPCONN_ARG – Illegal argument

The callback function should have the following signature:

void (*functionName)(void *arg)

Where the arg parameter is a pointer to an struct espconn instance.

Question: Is this a NEW struct espconn or the original one?

See also:

• The espconn architecture
• espconn_accept
• espconn_connect

espconn_regist_disconcb
Register a function that will be called back after a TCP disconnection.

sint8 espconn_regist_disconcb(
struct espconn *espconn,
espconn_connect_callback discon_cb)

The signature of the disconnect callback function is the same as the connect callback:

void (*functionName)(void *arg)

where arg is a struct espconn pointer.

See also:

• TCP
• The espconn architecture
• espconn_accept
• espconn_connect
• espconn_disconnect

espconn_regist_reconcb
Register a function that will be called when an error is detected.

Page 405

sint8 espconn_regist_reconcb(
struct espconn *espconn,
espconn_reconnect_callback recon_cb)

This callback is invoked when an error is detected. For example when attempting to
connect to a partner which isn't listening. It is likely that the name of this function was
simply badly chosen. See:

http://bbs.espressif.com/viewtopic.php?f=66&t=1063

The signature of the callback function is:

void (*functionName)(void *arg, sint8 err)

The arg parameter is a pointer to a struct espconn.

The err parameter is one of the following:

• ESPCONN_TIMEOUT (-3)

• ESPCONN_ABRT (-8)

• ESPCONN_RST (-9)

• ESPCONN_CLSD (-10)

• ESPCONN_CONN (-11) – Failed connecting to a partner

• ESPCONN_HANDSHAKE (-28)

• ESPCONN_PROTO_MSG ??

Question: What does it mean to the connection status if we receive an error indication?
Should we then try and disconnect or are we already disconnected? See:

http://www.esp8266.com/viewtopic.php?f=9&t=5864

See also:

• The espconn architecture
• TCP
• espconn_accept
• espconn_connect
• struct espconn

espconn_regist_write_finish
Register a callback function to be invoked when data has been successfully transmitted
to the partner.

sint8 espconn_regist_write_finish(struct espconn *espconn,
espconn_connect_callback write_finish_cb);

Page 406

http://www.esp8266.com/viewtopic.php?f=9&t=5864
http://bbs.espressif.com/viewtopic.php?f=66&t=1063

The signature of the callback is:

void (*functionName)(void *arg)

The arg parameter is a pointer to a struct espconn.

See also:

• The espconn architecture
• espconn_send

espconn_set_opt
Define which options to turn on for a connection.

sint8 espconn_set_opt(
struct espconn *espconn,
uint8 opt)

This function should be called in an espconn_connect_callback. The espconn
parameter is the control block for the connection that is to be modified.

The opt parameter is a bit encoding of flags that are to be set on. The opt parameter is
an enum of type espconn_option:

Enum Name Value

ESPCONN_REUSEADDR 0x01

ESPCONN_NODELAY 0x02

ESPCONN_COPY 0x04

ESPCONN_KEEPALIVE 0x08

Bits that are not set on are left unchanged from their current existing values.

Return code of 0 on success otherwise the code indicates the error:

• ESPCONN_ARG – Illegal argument

See also:

• espconn_clear_opt
• espconn_set_keepalive
• espconn_get_keepalive

espconn_clear_opt
Define which options to turn off for a connection.

sint8 espconn_clear_opt(
struct espconn *espconn,
uint8 opt)

Return code of 0 on success otherwise the code indicates the error:

Page 407

• ESPCONN_ARG – Illegal argument

The opt value is an enum of type espconn_option:

Enum Name Value

ESPCONN_REUSEADDR 0x01

ESPCONN_NODELAY 0x02

ESPCONN_COPY 0x04

ESPCONN_KEEPALIVE 0x08

See also:

• TCP Error handling
• espconn_set_opt
• espconn_set_keepalive
• espconn_get_keepalive

espconn_regist_time
Define an idle connection timeout value.

sint8 espconn_regist_time(
struct espconn *espconn,
uint32 interval,
uint8 typeFlag)

If a connection is idle for a period of time, the ESP8266 is configured to automatically
close the connection. It appears that the default is 10 seconds.

The espconn parameter describes the connection that is to have its timeout changed.

The interval parameter defines the timeout interval in seconds. The maximum value is
7200 seconds (2 hours).

The typeFlag parameter can be 0 to indicate that all connections are to be changed or 1
to set just this connection.

Return code of 0 on success otherwise the code indicates the error:

• ESPCONN_ARG – Illegal argument

See also:

• TCP

espconn_set_keepalive
sint8 espconn_set_keepalive(struct espconn *espconn, uint8 level, void *optArg)

Page 408

espconn_get_keepalive
sint8 espconn_get_keepalive(struct espconn *espconn, uint8 level, void *optArg)

???

espconn_secure_accept
Listen for an incoming SSL TCP connection

sint8 espconn_secure_accept(struct espconn *espconn)

Return code of 0 on success otherwise the code indicates the error:

• ESPCONN_MEM – Out of memory

• ESPCONN_ISCONN – Already connected

• ESPCONN_ARG – Illegal argument

espconn_secure_ca_disable
bool espconn_secure_ca_disable(uint8 level)

espconn_secure_ca_enable
bool espconn_secure_ca_enable(uint8 level, uint16 flash_sector)

espconn_secure_set_size

espconn_secure_get_size

espconn_secure_delete
Delete an SSL connection when running as an SSL based server.

sint8 espconn_secure_delete(struct espconn *espconn)

A return code of 0 indicates success.

espconn_secure_connect
Form an SSL connection to a partner.

sint8 espconn_secure_connect(struct espconn *espconn)

Form an SSL connection to a partner.

Return code of 0 on success otherwise the code indicates the error:

• ESPCONN_MEM – Out of memory

Page 409

• ESPCONN_ISCONN – Already connected

• ESPCONN_ARG – Illegal argument

espconn_secure_send
Send data through a secure connection.

sint8 espconn_secure_send(struct espconn *espconn, uint8 *pBuf, uint16 length)

Send data through a secure connection.

espconn_secure_disconnect
Secure TCP disconnection.

sint8 espconn_secure_disconnect(struct espconn *espconn)

Secure TCP disconnection.

Do not call this function from within an ESP callback function.

espconn_tcp_get_max_con
Return the maximum number of concurrent TCP connections.

uint8 espconn_tcp_get_max_con()

espconn_tcp_set_max_con
Set the maximum number of concurrent TCP connections

sint8 espconn_tcp_set_max_con(uint8 num)

espconn_tcp_get_max_con_allow
Get the maximum number of TCP clients allowed to connect inbound.

•

espconn_tcp_set_max_con_allow
Set the maximum number of TCP clients allowed to connect inbound.

espconn_recv_hold
Suspend receiving TCP data.

sint8 espconn_recv_hold(struct espconn *espconn)

Page 410

Suspend receiving new data over TCP. To resume receiving data, one can use the
espconn_recv_unhold function call.

• espconn_recv_unhold

espconn_recv_unhold
Unblock receiving TCP data.

sint8 espconn_recv_unhold(struct espconn *espconn)

Resume receiving new data over TCP. This method should be used in conjunction with
espconn_recv_hold which suspends receipt of data.

See also:

• espconn_recv_hold

UDP APIs

espconn_create
Create a UDP control block in preparation for sending datagrams.

sint8 espconn_create(struct espconn *espconn)

Return code of 0 on success otherwise the code indicates the error:

• ESPCONN_ARG – Illegal argument

• ESPCONN_ISCONN – Already connected

• ESPCONN_MEM – Out of memory

See also:

• UDP
• espconn_regist_sentcb
• espconn_regist_recvcb
• espconn_send
• espconn_delete
• espconn_connect

espconn_igmp_join
Join a multicast group.

espconn_igmp_leave
Leave a multicast group.

Page 411

ping APIs

ping_start
bool ping_start(struct ping_option *ping_opt)

Includes:

• ping.h

See also:

• Ping request
• struct ping_option

ping_regist_recv
bool ping_regist_recv(struct ping_option *ping_opt, ping_recv_function ping_recv)

Register a function that will be called when a ping is received. The signature of the
function is:

void (*functionName)(void* pingOpt, void *pingResp)

The parameters passed in are pingOpt which is a pointer to the struct ping_option
and pingResp which is a pointer to a struct ping_resp.

Includes:

• ping.h

See also:

• Ping request
• struct ping_option
• struct ping_resp

ping_regist_sent
bool ping_regist_sent(struct ping_option *ping_opt, ping_sent_function ping_sent)

Register a function that will be called when a ping is sent. The signature of the function
is:

void (*functionName)(void* pingOpt, void *pingResp)

The parameters passed in are pingOpt which is a pointer to the struct ping_option
and pingResp which is a pointer to a struct ping_resp.

Includes:

• ping.h

See also:

• Ping request
• struct ping_option

Page 412

mDNS APIs
See also:

• Multicast Domain Name Systems

espconn_mdns_init
Intialize mDNS on the ESP8266.

void espconn_mdns_init(struct mdns_info *info)

The structure of type struct mdns_info contains vital initialization information and must
be completed before calling this function.

See also:

• struct mdns_info

espconn_mdns_close
Close mDNS support.

void espconn_mdns_close()

Close mDNS support. This can be used following a call to espconn_mdns_init().

See also:

• espconn_mdns_init

espconn_mdns_server_register
Register the mDNS server.

void espconn_mdns_server_register()

espconn_mdns_server_unregister
Unregister the mDNS server.

void espconn_mdns_server_unregister()

espconn_mdns_get_servername
Get the mDNS server name.

char *espconn_mdns_get_servername()

espconn_mdns_set_servername
Set the mDNS server name.

Page 413

char *espconn_mdns_set_servername()

espconn_mdns_set_hostname
Set the mDNS hostname.

void espconn_mdns_set_hostname(char *name)

espconn_mdns_get_hostname
Get the mDNS hostname

char *espconn_mdns_get_hostname()

espconn_mdns_disable
Disable mDNS.

void espconn_mdns_disable()

See also:

• espconn_mdns_enable

espconn_mdns_enable
Enable mDNS

void espconn_mdns_enable()

See also:

• espconn_mdns_disable

GPIO – ESP32
The gpio functions in the ESP32 are provided through the ESP-IDF. One must include
the "driver/gpio.h" header.

gpio_config
esp_err_t gpio_config(gpio_config_t *pGPIOConfig)

The gpio_config_t data structure contains:

uint64_t pin_bit_mask

gpio_mode_t mode

gpio_pullup_t pull_up_en

gpio_pulldown_t pull_down_en

gpio_int_type_t intr_type

Page 414

The pin_bit_mask defines which pins we are configuring. Constants are defined to
assist us here. For example, if we are configuring GPIO34 and GPIO16 we can set the
pin_bit_mask to GPIO_Pin_16 | GPIO_Pin_34 which is the boolean "or" of the two
constant values.

The mode is used to set the mode of all of the pins we are configuring. The allowable
values are:

• GPIO_MODE_INPUT

• GPIO_MODE_OUTPUT

• GPIO_MODE_OUTPUT_OD

• GPIO_MODE_INPUT_OUTPUT_OD

• GPIO_MODE_INPUT_OUTPUT

The pull_up_en enables an internal pull-up resistor. The allowable values are:

• GPIO_PULLUP_ENABLE

• GPIO_PULLUP_DISABLE

The pull_down_en enables an internal pull-down resistor. The allowable values are:

• GPIO_PULLDOWN_ENABLE

• GPIO_PULLDOWN_DISABLE

The intr_type configures how interrupts are handled for the pin. The allowable values
are:

• GPIO_INTR_DISABLE

• GPIO_INTR_POSEDGE

• GPIO_INTR_NEGEDGE

• GPIO_INTR_ANYEDGE

• GPIO_INTR_LOW_LEVEL

• GPIO_INTR_HIGH_LEVEL

gpio_get_level
Retrieve the signal level on the pin.

int gpio_get_level(gpio_num_t gpioNum)

Get the signal level on the specified pin. Either 0 or 1.

Page 415

gpio_intr_enable
Enable interrupts on the specified pin.

esp_err_t gpio_intr_enable(gpio_num_t gpioNum)

gpio_intr_disable
Disable interrupts on the specified pin.

esp_err_t gpio_intr_disable(gpio_num_t gpioNum)

gpio_isr_register
Register an interrupt handler.

esp_err_t gpio_isr_register(uint32_t gpioIntr, void (*fn)(void *), void *arg)

gpio_set_direction
Set the direction of a pin.

esp_err_t gpio_set_direction(gpio_num_t gpioNum, gpio_mode_t mode)

The mode is used to set the mode of the pin we are configuring. The allowable values
are:

• GPIO_MODE_INPUT

• GPIO_MODE_OUTPUT

• GPIO_MODE_OUTPUT_OD

• GPIO_MODE_INPUT_OUTPUT_OD

• GPIO_MODE_INPUT_OUTPUT

gpio_set_intr_type
Set the interrupt type of a pin.

esp_err_t gpio_set_intr_type(gpio_num_t gpioNum, gpio_int_type_t intrType)

The intr_type configures how interrupts are handled for the pin. The allowable values
are:

• GPIO_INTR_DISABLE

• GPIO_INTR_POSEDGE

• GPIO_INTR_NEGEDGE

• GPIO_INTR_ANYEDGE

• GPIO_INTR_LOW_LEVEL

Page 416

• GPIO_INTR_HIGH_LEVEL

gpio_set_level
Set the level of a pin.

esp_err_t gpio_set_level(gpio_num_t gpioNum, uint32_t level)

Se the level of an output pin. The level should be either 0 or 1.

gpio_set_pull_mode
Set the pullup/pulldown mode of the pin.

esp_err_t gpio_set_pull_mode(gpio_num_t gpioNum, gpio_pull_mode_t pull)

The allowable values for pull are:

• GPIO_PULLUP_ONLY

• GPIO_PULLDOWN_ONLY

• GPIO_PULLUP_PULLDOWN

• GPIO_FLOATING

gpio_wakeup_enable
Enable GPIO wake-up.

esp_err_t gpio_wakeup_enable(gpio_num_t gpioNum, gpio_int_type_t intrType)

gpio_wakeup_disable
Disable GPIO wake-up.

esp_err_t gpio_wakeup_disable(gpio_num_t gpioNum)

GPIO – ESP8266
Pin names are:

• PERIPHS_IO_MUX_GPIO0_U

• PERIPHS_IO_MUX_GPIO2_U

• PERIPHS_IO_MUX_MTDI_U

• PERIPHS_IO_MUX_MTCK_U // GPIO 13

• PERIPHS_IO_MUX_MTMS_U // GPIO 14

Page 417

Pin Name Function 1 Function 2 Function 3 Function 4 Physical pin

MTDI_U MTDI I2SI_DATA HSPIQ MISO GPIO12 10

MTCK_U MTCK I2SI_BCK HSPID MOSI GPIO13 12

MTMS_U MTMS I2SI_WS HSPICLK GPIO14 9

MTDO_U MTDO I2SO_BCK HSPICS GPIO15 13

U0RXD_U U0RXD I2SO_DATA GPIO3 25

U0TXD_U U0TXD SPICS1 GPIO1 26

SD_CLK_U SD_CLK SPICLK GPIO6 21

SD_DATA0_U SD_DATA0 SPIQ GPIO7 22

SD_DATA1_U SD_DATA1 SPID GPIO8 23

SD_DATA2_U SD_DATA2 SPIHD GPIO9 18

SD_DATA3_U SD_DATA3 SPIWP GPIO10 19

SD_CMD_U SD_CMD SPICS0 GPIO11 20

GPIO0_U GPIO0 SPICS2 15

GPIO2_U GPIO2 I2SO_WS U1TXD 14

GPIO4_U GPIO4 CLK_XTAL 16

GPIO5_U GPIO5 CLK_RTC 24

Pin functions are:

• FUNC_GPIO0

• FUNC_GPIO12

• FUNC_GPIO13

• FUNC_GPIO14

• FUNC_GPIO15

• FUNC_U0RTS

• FUNC_GPIO3

• FUNC_U0TXD

• FUNC_GPIO1

• FUNC_SDCLK

• FUNC_SPICLK

• FUNC_SDDATA0

• FUNC_SPIQ

• FUNC_U1TXD

Page 418

• FUNC_SDDATA1

• FUNC_SPID

• FUNC_U1RXD

• FUNC_SDATA1_U1RXD

• FUNC_SDDATA2

• FUNC_SPIHD

• FUNC_GPIO9

• FUNC_SDDATA3

• FUNC_SPIWP

• FUNC_GPIO10

• FUNC_SDCMD

• FUNC_SPICS0

• FUNC_GPIO0

• FUNC_GPIO2

• FUNC_U1TXD_BK

• FUNC_U0TXD_BK

• FUNC_GPIO4

• FUNC_GPIO5

• LED_GPIO_FUNC

PIN_PULLUP_DIS
Disable pin pull-up

PIN_PULLUP_DIS(PIN_NAME)

See also:

• GPIOs

PIN_PULLUP_EN
Enable pin pull-up

PIN_PULLUP_EN(PIN_NAME)

See also:

• GPIOs

Page 419

PIN_FUNC_SELECT
Set the function of a specific pin.

PIN_FUNC_SELECT(PIN_NAME, FUNC)

See also:

• GPIOs

GPIO_ID_PIN
Get the id of a logical pin.

GPIO_ID_PIN(pinNum)

Convert a logical pin number into the identity of a pin. This is an interesting function as
GPIO_ID_PIN(x) is coded to equal "x". The question now becomes whether or not one
still needs to code GPIO_ID_PIN() when accessing GPIO functions.

GPIO_OUTPUT_SET
Set the output value of a specific pin.

GPIO_OUTPUT_SET(GPIO_NUMBER, value)

This is a helper macro that invokes gpio_output_set(). Take care when passing in a
value that is part of an expression such as pData=='1'. The value is evaluated a
number of times so should not have side-effects. There is also a current bug related to
operator precedence … it is strongly recommended to place the value in extra
parenthesis when coding. For example:

GPIO_OUTPUT_SET(GPIO_NUMBER, (pData=='1'))

Includes:

• gpio.h

See also:

• GPIOs

GPIO_DIS_OUTPUT
Set the pin to be input (disabled output).

GPIO_DIS_OUTPUT(GPIO_NUMBER)

This is a helper macro that invokes gpio_output_set().

Page 420

Includes:

• gpio.h

See also:

• GPIOs

GPIO_INPUT_GET
Read the value of the pin.

GPIO_INPUT_GET(GPIO_NUMBER)

This is a helper macro that invokes gpio_input_get().

Includes:

• gpio.h

See also:

• gpio_input_get

gpio_output_set
Change the values of GPIO pins in one operation.

void gpio_output_set(
uint32 set_mask,
uint32 clear_mask,
uint32 enable_output,
uint32 enable_input)

The parameters are:

• set_mask – Bits with a "1" are set high, bits with a "0" are left unchanged.

• clear_mask – Bits with a "1" are set low, bits with a "0" are left unchanged

• enable_output – Bits with a "1" are set to output

• enable_input – Bits with a "1" are set to input

Includes:

• gpio.h

See also:

• GPIOs

gpio_input_get
Get the values of the GPIOs.

uint32 gpio_input_get()

Page 421

Retrieve the values from the GPIOs and return a bitmask of their values.

Includes:

• gpio.h

See also:

• GPIOs

gpio_intr_handler_register
Register a callback function that will be invoked when a GPIO interrupt occurs.

void gpio_intr_handler_register(
gpio_intr_handler_fn_t callbackFunction,
void *arg)

The signature of the handler function must be:

void (*functionName)(uint32 interruptMask, void *arg)

Includes:

• gpio.h

See also:

• GPIO Interrupt handling

gpio_pin_intr_state_set
void gpio_pin_intr_state_set(

uint32 pinId,
GPIO_INT_TYPE intr_state)

The pinId is the GPIO pin id value returned from GPIO_ID_PIN(num).

The intr_state parameter defines what triggers the interrupt.

Includes:

• gpio.h

See also:

• GPIO Interrupt handling
• GPIOs
• GPIO_INT_TYPE

gpio_intr_pending
Obtain the set of pending interrupts

uint32 gpio_intr_pending()

Includes:

Page 422

• gpio.h

See also:

• GPIO Interrupt handling

gpio_intr_ack
Flag a set of interrupts as having been handled. This should be called from an interrupt
handler function.

void gpio_intr_ack(uint32 ack_mask)

Includes:

• gpio.h

gpio_pin_wakeup_enable
Define that the device can wakeup from light-sleep mode when an IO interrupt occurs.

void gpio_pin_wakeup_enable(
uint32 pin,
GPIO_INT_TYPE intr_state)

The pin parameter defines the pin number used to wake the device.

The intr_state defines which type of transition will wake the device. The choices are:

• GPIO_PIN_INTR_LOLEVEL

• GPIO_PIN_INTR_HILEVEL

Includes:

• gpio.h

See also:

• GPIOs
• GPIO_INT_TYPE

gpio_pin_wakeup_disable
void gpio_pin_wakeup_disable()

Includes:

• gpio.h

Page 423

UART APIs
These functions have to be compiled in from the uart files in driver_lib.

UART_CheckOutputFinished
bool UART_CheckOutputFinished(uint8 uart_no, uint32 time_out_us)

UART_ClearIntrStatus
void UART_ClearIntrStatus(uint8 uart_no,uint32 clr_mask);

UART_ResetFifo
void UART_ResetFifo(uint8 uart_no);

UART_SetBaudrate
Set the baud rate.

void UART_SetBaudrate(uint8 uart_no, uint32 baud_rate)

Set the baud rate used by the UART. The uart_no identifies the UART to set (0 or 1)
and the baud_rate is the desired baud rate. UARTs have definitions of UART0 and
UART1.

UART_SetFlowCtrl
void UART_SetFlowCtrl(uint8 uart_no,UART_HwFlowCtrl flow_ctrl,uint8 rx_thresh)

UART_SetIntrEna

void UART_SetIntrEna(uint8 uart_no, uint32 ena_mask)

UART_SetLineInverse
void UART_SetLineInverse(uint8 uart_no, UART_LineLevelInverse inverse_mask)

UART_SetParity
Set the parity.

void UART_SetParity(uint8 uart_no, UartParityMode parity_mode)

Set the parity used by the UART. The uart_no identifies the UART to set (0 or 1) and
the parity_mode defines what to use.

Page 424

UART_SetPrintPort
Set the output terminal.

void UART_SetPrintPort(uint8 uart_no)

Set the output terminal. Set the UART to be used when writing debug via os_printf().

UARTs have definitions of UART0 and UART1.

UART_SetStopBits
Set how long the stop bits should be.

void UART_SetStopBits(uint8 uart_no, UartStopBitsNum bit_num)

Set how long the stop bits should be. The num identifies the number of stop bits to use.

UART_SetWordLength
Set the number of bits in a transmission unit.

void UART_SetWordLength(uint8 uart_no, UartBitsNum4Char len)

Set the number of bits in a transmission unit. The uart_no identifies the UART to set (0
or 1) and the len parameter defines how many bits.

UART_WaitTxFifoEmpty
Wait for the TX buffer to empty.

void UART_WaitTxFifoEmpty(uint8 uart_no, uint32 time_out_us)

Wait for the TX buffer to empty. The uart_no identifies the UART to set (0 or 1) and the
time_out_us specifies how long to wait before giving up. The value is supplied in
microseconds.

uart_init
void uart_init(UartBautRate uart0BaudRate, UartBautRate uart1BaudRate)

There appears to be a typo in the data type … but likely we will be stuck with that now.
The UartBautRate is an enum that contains:

• BIT_RATE_9600

• BIT_RATE_19200

• BIT_RATE_38400

Page 425

• BIT_RATE_57600

• BIT_RATE_74880

• BIT_RATE_115200

• BIT_RATE_230400

• BIT_RATE_460800

• BIT_RATE_921600

See also:

• Working with serial

uart0_tx_buffer
Transmit a buffer of data via UART0.

void uart0_tx_buffer(uint8 *buffer, uint16 length)

Transmit the data pointed to by the buffer for the given length.

See also:

• Working with serial

uart0_sendStr
Transmit a string of data via UART0.

void uart0_sendStr(const char *str)

Transmit a string of data via UART0. The string to send is supplied in the str
parameter.

uart0_rx_intr_handler
Handle the receiving of data via UART0.

void uart0_rx_intr_handler(void *parameter)

The parameter is a pointer to a RcvMsgBuff structure. My best guess on how to use this
function is to create it in user_main.c and its mere existence will cause it to be invoked
at the appropriate time. Looking at the sample supplied, we see that it needs a detailed
low level implementation.

See also:

• Working with serial

Page 426

I2C Master APIs
These functions have to be compiled in from the i2c_master files in driver_lib.

See also:

• Working with I2C

i2c_master_checkAck
Retrieve the ack from the data bus and return true or false.

bool i2c_master_checkAck()

Retrieve the ack from the data bus and return true or false.

i2c_master_getAck
Retrieve the ack from the data bus and return its value.

uint8 i2c_master_getAck()

Retrieve the ack from the data bus and return its value. It isn't clear why this function
might be exposed as well as the i2c_master_checkAck().

i2c_master_gpio_init
Configure the GPIOs and then call i2c_master_init().

void i2c_master_gpio_init()

Configure the GPIOs and then call i2c_master_init().

i2c_master_init
Initialize I2C functions.

void i2c_master_init()

Initialize I2C functions.

i2c_master_readByte
uint8 i2c_master_readByte()

i2c_master_send_ack

void i2c_master_send_ack()

Page 427

i2c_master_send_nack
void i2c_master_send_nack()

i2c_master_setAck
Set ack to i2c bus as level value.

void i2c_master_setAck(uint8 level)

Set ack to i2c bus as level value.

i2c_master_start
Set I2C to send state.

void i2c_master_start()

Set I2C to send state.

i2c_master_stop
Set I2C to stop sending state.

void i2c_master_stop()

Set I2C to stop sending state.

i2c_master_writeByte
void i2c_master_writeByte(uint8 wrdata)

SPI APIs
These functions have to be compiled in from the SPI files in driver_lib.

cache_flush

spi_lcd_9bit_write

spi_mast_byte_write

spi_byte_write_espslave

Page 428

spi_slave_init

spi_slave_isr_handler

hspi_master_readwrite_repeat

spi_test_init

PWM APIs

pwm_init
Initialize PWM.

void pwm_init(
uint32 period,
uint32 *duty,
uint32 num_pwm_channels,
uint32 (*pin_info_list)[3])

The period parameter is the PWM period. The value is measured in microseconds with
a minimum value of 1000 giving a 1KHz period (there are 1000 periods of 1000
microseconds in a second).

The duty parameter is the duty ratio of each PWM channel.

The num_pwm_channels is the number of PWM channels being defined. There can be up
to PWM_CHANNEL_NUM_MAX channels. Currently this is defined as 8.

The pin_info_list is a pointer to an array of num_pwm_channels * 3 instances of
uint32s that provides the PWM pin mappings. The parameters per PWM channel are:

• GPIO register

• IO reuse of corresponding pin

• GPIO number

For example:

uint32 pinInfoList[][3] = {
 {PERIPHS_IO_MUX_MTDI_U, FUNC_GPIO12, 12},
 {PERIPHS_IO_MUX_MTDO_U, FUNC_GPIO15, 15},
 {PERIPHS_IO_MUX_MTCK_U, FUNC_GPIO13, 13}
};

See also:

• Pulse Width Modulation – PWM
• pwm_set_duty
• pwm_set_period

Page 429

• pwm_start

pwm_start
void pwm_start()

After configuring the parameters for PWM, this function should be called.

See also:

• Pulse Width Modulation – PWM

pwm_set_duty
void pwm_set_duty(uint32 duty, uint8 channel)

The resolution of a duty step is 45 nanoseconds. Here we can set the number of duty
steps in a cycle. For example, imagine we have a period of 1KHz. This means that 1
cycle is 1000 microseconds. If we want the duty cycle to be 50%, then the output has to
be high for 500 microseconds. 500 microseconds is 11111 units of 45 nanoseconds and
that would become the duty value. Formulaic-ally, the duty ratio is (duty * 45) /
(period *1000).

The duty parameter supplies the number of 45 nanosecond intervals that the output will
be high in one period.

duty = 1000000 / 0.045 / frequency

The channel parameter specifies which of the PWM channels is being changed.

After changing the duty value, a call to pwm_start() is required to recalculate the
values.

See also:

• Pulse Width Modulation – PWM
• pwm_get_duty
• pwm_init

pwm_get_duty
uint32 pwm_get_duty(uint8 channel)

Get the duty value of the specified channel.

See also:

• Pulse Width Modulation – PWM
• pwm_get_duty
• pwm_init

pwm_set_period
Set the period for PWM operations.

Page 430

void pwm_set_period(uint32 period)

The period parameter is the PWM period. The value is measured in microseconds with
a minimum value of 1000 giving a 1KHz period (there are 1000 periods of 1000
microseconds in a second).

See also:

• Pulse Width Modulation – PWM
• pwm_get_period
• pwm_init

pwm_get_period
uint32 pwm_get_period()

Get the current setting of the PWM period.

See also:

• Pulse Width Modulation – PWM
• pwm_set_period
• pwm_init

get_pwm_version
uint32 get_pwm_version()

See also:

• Pulse Width Modulation – PWM

set_pwm_debug_en(uint8 print_en)
Used to enable or disable debug print.

Bit twiddling
• BIT(b) – The 2^b value

Non Volatile Storage

nvs_close
Close a previously opened handle.

void nvs_close(nvs_handle handle)

Close a handle that was previously opened by a call to nvs_open().

Page 431

nvs_commit
Commit changes to non volatile storage.

esp_err_t nvs_commit(nvs_handle handle)

Any writes made against the storage are committed at this point. Note that writes may
have been committed before this point but this forces all the writes to be flushed. Think
of this as committing any pending writes as opposed to anything related to a
transaction.

nvs_dump
void nvs_dump()

nvs_erase_all
Erase all the name value pairs.

esp_err_t nvs_erase_all(nvs_handle handle)

Erase all the name value pairs. Note that this may not be truly performed until after a
call to nvs_commit().

nvs_erase_key
Erase a specific name/value key pair.

esp_err_t nvs_erase_key(nvs_handle handle, char *key)

Erase the name/value pair with the given key.

nvs_flash_init
esp_err_t nvs_flash_init(void)

nvs_get_blob
esp_err_t nvs_get_blob(nvs_handle handle, const char *key, void *out, size_t *length)

nvs_get_str
esp_err_t nvs_get_str(nvs_handle handle, const char *key, char *out, size_t *length)

nvs_get_i8
esp_err_t nvs_get_i8(nvs_handle handle, const char *key, int8_t *out_value)

Page 432

nvs_get_i16
esp_err_t nvs_get_i16(nvs_handle handle, const char *key, int16_t *out_value)

nvs_get_i32
esp_err_t nvs_get_i32(nvs_handle handle, const char *key, int32_t *out_value)

nvs_get_i64
esp_err_t nvs_get_i64(nvs_handle handle, const char *key, int64_t *out_value)

nvs_get_u8
esp_err_t nvs_get_u8(nvs_handle handle, const char *key, uint8_t *out_value)

nvs_get_u16
esp_err_t nvs_get_u16(nvs_handle handle, const char *key, uint16_t *out_value)

nvs_get_u32
esp_err_t nvs_get_u32(nvs_handle handle, const char *key, uint32_t *out_value)

nvs_get_u64
esp_err_t nvs_get_u64(nvs_handle handle, const char *key, uint64_t *out_value)

nvs_open
Open a storage area with a given namespace.

esp_err_t nvs_open(const char *name, nvs_open_mode open_mode, nvs_handle *out_handle)

Open a given named storage area for access. The name of the area is supplied in the
name parameter. The open_mode may be one of:

• NVS_READWRITE – The application can read and write the storage.

• NVS_READONLY – The application can only read the storage.

nvs_set_blob
esp_err_t nvs_set_blob(nvs_handle handle, const char *key, const void *value, size_t
length)

Page 433

nvs_set_str
esp_err_t nvs_set_str(nvs_handle handle, const char *key, const char *value)

nvs_set_i8
esp_err_t nvs_set_i8(nvs_handle handle, const char *key, int8_t value)

nvs_set_i16
esp_err_t nvs_set_i16(nvs_handle handle, const char *key, int16_t value)

nvs_set_i32
esp_err_t nvs_set_i32(nvs_handle handle, const char *key, int32_t value)

nvs_set_i64
esp_err_t nvs_set_i64(nvs_handle handle, const char *key, int64_t value)

nvs_set_u8
esp_err_t nvs_set_u8(nvs_handle handle, const char *key, uint8_t value)

nvs_set_u16
esp_err_t nvs_set_u16(nvs_handle handle, const char *key, uint16_t value)

nvs_set_u32
esp_err_t nvs_set_u32(nvs_handle handle, const char *key, uint32_t value)

nvs_set_u64
esp_err_t nvs_set_u64(nvs_handle handle, const char *key, uint64_t value)

Page 434

ESP Now

esp_now_add_peer

esp_now_deinit

esp_now_del_peer

esp_now_get_peer_key

esp_now_get_peer_role

esp_now_get_self_role

esp_now_init

esp_now_register_recv_cb

esp_now_register_send_cb

esp_now_send
The maximum amount of data that can be sent as a unit is 256 bytes.

esp_now_set_kok

esp_now_set_peer_role

esp_now_set_peer_key

esp_now_set_self_role

esp_now_unregister_recv_cb

esp_now_unregister_send_cb

SPIFFS
When an API call is made to SPIFFS, it can possibly set an error code that can be
retrieved by a call to SPIFFS_errno(). The returned value can be one of the following:

Symbol Value Meaning

SPIFFS_OK 0

SPIFFS_ERR_NOT_MOUNTED -10000

SPIFFS_ERR_FULL -10001

SPIFFS_ERR_NOT_FOUND -10002

SPIFFS_ERR_END_OF_OBJECT -10003

SPIFFS_ERR_DELETED -10004

Page 435

SPIFFS_ERR_NOT_FINALIZED -10005

SPIFFS_ERR_NOT_INDEX -10006

SPIFFS_ERR_OUT_OF_FILE_DESC -10007

SPIFFS_ERR_FILE_CLOSED -10008

SPIFFS_ERR_FILE_DELETED -10009

SPIFFS_ERR_BAD_DESCRIPTOR -10010

SPIFFS_ERR_IS_INDEX -10011

SPIFFS_ERR_IS_FREE -10012

SPIFFS_ERR_INDEX_SPAN_MISMATCH -10013

SPIFFS_ERR_DATA_SPAN_MISMATCH -10014

SPIFFS_ERR_INDEX_REF_FREE -10015

SPIFFS_ERR_INDEX_REF_LU -10016

SPIFFS_ERR_INDEX_REF_INVALID -10017

SPIFFS_ERR_INDEX_FREE -10018

SPIFFS_ERR_INDEX_REF_LU -10019

SPIFFS_ERR_INDEX_INVALID -10020

SPIFFS_ERR_NOT_WRITABLE -10021

SPIFFS_ERR_NOT_READABLE -10022

SPIFFS_ERR_CONFLICTING_NAME -10023

SPIFFS_ERR_NOT_CONFIGURED -10024

SPIFFS_ERR_NOT_A_FS -10025

SPIFFS_ERR_MOUNTED -10026

SPIFFS_ERR_ERASE_FAIL -10027

SPIFFS_ERR_MAGIC_NOT_POSSIBLE -10028

SPIFFS_ERR_NO_DELETED_BLOCKS -10029

SPIFFS_ERR_INTERNAL -10050

SPIFFS_ERR_TEST -10100

??? -10072 Possibly attempt to create a file that already exists.
Could also mean "no error".

See also:

• Spiffs File System

esp_spiffs_deinit

esp_spiffs_init
Initialize SPIFFS.

Page 436

sint32 esp_spiffs_init(struct esp_spiffs_config *config)

The config parameter is a structure defining the initialization information for SPIFFs.

It contains:

• phys_size

• phys_addr

• phys_erase_block

• log_block_size

• log_page_size

• fd_buf_size

• cache_buf_size

An example configuration might be:

struct esp_spiffs_config config;
config.phys_size = FS1_FLASH_SIZE;
config.phys_addr = FS1_FLASH_ADDR;
config.phys_erase_block = SECTOR_SIZE;
config.log_block_size = LOG_BLOCK;
config.log_page_size = LOG_PAGE;
config.fd_buf_size = FD_BUF_SIZE * 2;
config.cache_buf_size = CACHE_BUF_SIZE;

A return code of 0 means success.

SPIFFS_check
Runs a consistency check on given filesystem.

s32_t SPIFFS_check(spiffs *fs)

SPIFFS_clearerr
Clears last error.

void SPIFFS_clearerr(spiffs *fs)

SPIFFS_close
Closes a filehandle. If there are pending write operations, these are finalized before
closing.

void SPIFFS_close(spiffs *fs, spiffs_file filehandle)

Close the filehandle that was previously opened with a call to SPIFFS_open().

See also:

• SPIFFS_open

Page 437

SPIFFS_closedir
Closes a directory stream.

s32_t SPIFFS_closedir(spiffs_DIR *spiffsDir)

The directory stream should have been previously opened with a call to
SPIFFS_opendir().

See also:

• SPIFFS_opendir

• SPIFFS_readdir

SPIFFS_creat
Create a specific file.

s32_t SPIFFS_creat(spiffs *fs, char *path, spiffs_mode mode)

One normally uses SPIFFS_open() to create a file.

SPIFFS_erase_deleted_block
Erase deleted blocks in the file system.

s32_t SPIFFS_erase_deleted_block(spiffs *fs)

SPIFFS_errno
Get the last error code.

s32_t SPIFFS_errno(spiffs *fs)

Retrieve the last error code.

SPIFFS_fflush
Flush all write operations from cache to the file system.

s32_t SPIFFS_fflush(spiffs *fs, spiffs_file filehandle)

SPIFFS_format
Formats the entire file system.

s32_t SPIFFS_format(spiffs *fs);

All data will be lost. The filesystem must not be mounted when calling this. NB:
formatting is awkward. Due to backwards compatibility, SPIFFS_mount MUST be called

Page 438

prior to formatting in order to configure the filesystem. If SPIFFS_mount succeeds,
SPIFFS_unmount must be called before calling SPIFFS_format. If SPIFFS_mount fails,
SPIFFS_format can be called directly without calling SPIFFS_unmount first.

SPIFFS_fremove
Remove a file by its file handle.

s32_t SPIFFS_fremove(spiffs *fs, spiffs_file filehandle)

Remove a file by its file handle.

SPIFFS_fstat
Get the status of a file by a file handle.

s32_t SPIFFS_fstat(spiffs *fs,
 spiffs_file filehandle,
 spiffs_stat *spiffsStat)

The spiffs_stat contains:

• obj_id

• size – The size of the content of the file.

• type

• name – The name of the file.

SPIFFS_gc
Perform an explicit garbage collection.

s32_t SPIFFS_gc(spiffs *fs, u32_t size)

Invoke the garbage collection to ensure that there is enough space for size bytes.

SPIFFS_gc_quick
Perform an explicit garbage collection.

s32_t SPIFFS_gc_quick(spiffs *fs, u16_t max_free_pages)

SPIFFS_info
Return the amount of storage in total and amount actually used.

s32_t SPIFFS_info(spiffs *fs, u32_t *total, u32_t *used)

The total parameter is the total number of bytes in the file system. The used
parameter is the amount of space used.

Page 439

SPIFFS_lseek
Move the read/write offset for the file.

s32_t SPIFFS_lseek(spiffs *fs, spiffs_file filehandle, s32_t offset, int whence)

• fs – The file system that owns the file.

• filehandle – An open handle to the file.

• offset – An amount to move within the file.

• whence – The direction of movement:

◦ SPIFFS_SEEK_SET – Move to specific location.

◦ SPIFFS_SEEK_CUR – Move relative to the current location.

◦ SPIFFS_SEEK_END – Move relative to the end of the file.

SPIFFS_mount
Initializes the file system dynamic parameters and mounts the filesystem. If
SPIFFS_USE_MAGIC is enabled the mounting may fail with SPIFFS_ERR_NOT_A_FS if the
flash does not contain a recognizable file system. In this case, SPIFFS_format must be
called prior to remounting.

s32_t SPIFFS_mount(
 spiffs *fs,
 spiffs_config *config,
 u8_t *work,
 u8_t *fd_space, u32_t fd_space_size,
 void *cache, u32_t cache_size,
 spiffs_check_callback check_cb_f);

• fs – The file system struct.

• config – the physical and logical configuration of the file system.

• work

• fd_space

• fd_space_size – Example 32*4.

• cache

• cache_size – Example (128 + 32) * 8.

• check_cb_f

The spiffs_config structure contains:

Page 440

• hal_read_f – physical read function. This is a function with the signature:

s32_t func(u32_t addr, u32_t size, u8_t *dst)

• hal_write_f – physical write function. This is a function with the signature:

s32_t func(u32_t addr, u32_t size, u8_t *src)

• hal_erase_f – physical erase function. This is a function with the signature:

s32_t func(u32_t addr, u32_t size)

• phys_size – physical size of the spi flash.

• phys_addr – physical offset in spi flash used for spiffs, must be on block
boundary.

• phys_erase_block – physical size when erasing a block.

• log_block_size – logical size of a block, must be on physical block size
boundary and must never be less than a physical block. Example 4*1024.

• log_page_size – logical size of a page, must be at least log_block_size / 8.
Example 128.

SPIFFS_mounted
Checks whether the file system is mounted.

u8_t SPIFFS_mounted(spiffs *fs)

Returns 0 if not mounted.

SPIFFS_open
Open a file.

spiffs_file SPIFFS_open(
 spiffs *fs,
 char *path,
 spiffs_flags flags,
 spiffs_mode mode)

Open a file. This can also include the creation of the file when it is opened.

• fs – The file system to open.

• path – The path to the file to open.

• flags – Control flags for opening the file. A combination of:

◦ SPIFFS_APPEND

◦ SPIFFS_CREAT

Page 441

◦ SPIFFS_DIRECT

◦ SPIFFS_RDONLY

◦ SPIFFS_RDWR

◦ SPIFFS_TRUNC

◦ SPIFFS_WRONLY

• mode – The mode for the open. Ignored in this release.

See also:

• SPIFFS_close

SPIFFS_open_by_dirent
Open a file by its directory entry.

spiffs_file SPIFFS_open_by_dirent(
 spiffs *fs,
 struct spiffs_dirent *spiffsDirEnt,
 spiffs_flags flags,
 spiffs_mode mode)

Open a file.

• fs – The file system to open.

• spiffsDirEnt – The path to the file to open.

• flags – Control flags for opening the file. A combination of:

◦ SPIFFS_APPEND

◦ SPIFFS_DIRECT

◦ SPIFFS_RDONLY

◦ SPIFFS_RDWR

◦ SPIFFS_TRUNC

◦ SPIFFS_WRONLY

SPIFFS_opendir
Open a directory stream for the directory name specified.

spiffs_DIR *SPIFFS_opendir(
 spiffs *fs,
 char *directoryName,
 spiffs_DIR *spiffsDir)

• fs – The SPIFFS file system to be worked against.

Page 442

• directoryName – The name of the directory to be read.

• spiffsDir – The directory structure to be populate.

See also:

SPIFFS_read
Read data from a file.

s32_t SPIFFS_read(spiffs *fs, spiffs_file filehandle, void *buf, s32_t len)

Read data from a file and place in a buffer.

SPIFFS_readdir
Read the directory.

struct spiffs_dirent *SPIFFS_readdir(
 spiffs_DIR *spiffsDir,
 struct spiffs_dirent *spiffsDirEnt)

Read the directory specified by spiffsDir which had previously been opened with
SPIFFS_opendir().

A struct spiffs_dirent contains:

• obj_id

• name

• type

• size

• pix

See also:

• Spiffs File System

• SPIFFS_opendir

• SPIFFS_closedir

• SPIFFS_open_by_dirent

SPIFFS_remove
Remove a file by name.

s32_t SPIFFS_remove(spiffs *fs, char *path)

Page 443

SPIFFS_rename
Rename a file.

s32_t SPIFFS_rename(spiffs *fs, char *old, char *newPath)

SPIFFS_stat
Get the status of a file by path.

s32_t SPIFFS_stat(
 spiffs *fs,
 char *path,
 spiffs_stat *spiffsStat)

• fs – The file system holding the file.

• path – The path to the file.

• spiffsStat – The stats data of the file.

The spiffs_stat contains:

• obj_id

• size

• type

• name

SPIFFS_unmount
Unmount a file system.

void SPIFFS_unmount(spiffs *fs)

SPIFFS_write
Write data into an open file.

s32_t SPIFFS_write(
 spiffs *fs,
 spiffs_file filehandle,
 void *buf, s32_t len)

Lib-C
The FreeRTOS environment provides a set of C runtime library routines that are defined
in "esp_libc.h".

Page 444

atoi
int atoi(const char *s)

atol
long atol(const char *s)

bzero
void bzero(void *s, size_t n)

calloc
void *calloc(size_t c, size_t n)

free
void free(void *p)

malloc
void *malloc(size_t n)

memcmp
int memcmp(const void *m1, const void *m2, size_t n)

memcpy
void *memcpy(void *dst, const void *src, size_t n)

memmove
void *memmove(void *dst, const void *src, size_t n)

memset
void *memset(void *dst, int c, size_t n)

os_get_random
int os_get_random(unsigned char *buf, size_t len)

Page 445

os_random
unsigned long os_random(void)

printf
int printf(const char *format, …)

Need to include "stdio.h".

puts
int puts(const char *str)

rand
Generate a random number.

int rand()

Return a random number. Note that the result is an integer which is signed.

realloc
void *realloc(void *p, size_t n)

snprintf
int snprintf(char *buf, unsigned int count, const char *format, …)

sprintf
int sprintf(char *out, const char *format, …)

strcat
char *strcat(char *dst, const char *src)

strchr
char *strchr(const char *s, int c)

Page 446

strcmp
int strcmp(const char *s1, const char *s2)

strcpy
char *strcpy(char *dst, const char *src)

strcspn
size_t strcspn(const char *s, const char *reject)

strdup
char *strdup(const char *s)

strlen
Return the length of a null terminated string.

size_t strlen(const char *s)

Return the length of a null terminated string.

strncat
char *strncat(char *dst, const char *src, size_t count)

strncmp
int strncmp(const char *s1, const char *s2, size_t n)

strncpy
char *strncpy(char *dst, const char *src, size_t n)

strrchr
char *strrchr(const char *s, int c)

strspn
size_t strspn(const char *s, const char *accept)

Page 447

strstr
char *strstr(const char *s1, const char *s2)

strtok
char *strtok(char *s, const char *delim)

strtok_r
char *strtok_r(char *s, const char *delim, char **ptrptr)

strtol
long strtol(const char *str, char **endptr, int base)

zalloc
void *zalloc(size_t n)

Data structures

esp_spiffs_config
• phys_size – Physical size of the SPI Flash.

• phys_addr – Physical offset in SPI flash used for spiffs. Must be on a block
boundary.

• phys_erase_block – Physical size when erasing a block.

• log_block_size – Logical size of a block. Must match the physical size of a
block.

• log_page_size – Logical size of a page.

• fd_buf_size – File descriptor memory area size.

• cache_buf_size – The cache buffer size.

station_config
A description of a station configuration. Contains the following fields:

• uint8 ssid[32] – The SSID of the access point.

• uint8 password[64] – The password to access the access point.

• uint8 bssid_set – Flag to indicate whether or not to use the bssid property. A
value of 1 means to use and a value of 0 means to not use.

Page 448

• uint8 bssid[6] – If several access points have the same SSID, BSSID can
contain a MAC address to indicate which of the access points to connect to.

See also:

• Station configuration
• wifi_station_get_config_default
• wifi_station_set_config_current

struct softap_config
Configuration control structure for softAP.

• uint8 ssid[32]

• uint8 password[64]

• uint8 ssid_len – The length of the SSID. If 0, then the ssid is null terminated.

• uint8 channel – The channel to be used for communication. Values are 1 to 13.

• uint8 authmode – The authentication mode required. The choices are:

◦ AUTH_OPEN

◦ AUTH_WPA2_PSK

◦ AUTH_WPA_PSK

◦ AUTH_WPA_WPA2_PSK

 AUTH_WEP is not supported.

• uint8 ssid_hidden – Whether or not this SSID is hidden. A value of 1 makes it
hidden.

• uint8 max_connection – The maximum number of station connections. The
maximum and default is 4.

• uint16 beacon_interval – The beacon interval in milliseconds. Values are 100 –
60000.

See also:

• wifi_softap_get_config
• wifi_softap_get_config_default
• wifi_softap_set_config_current

struct station_info
This structure provides information on the stations connected to an ESP8266 while it is
an access point. It is a linked list with properties:

• uint8 bssid[6] – The ???

Page 449

• struct ipaddr ip – The IP address of the connected station

To get the next entry, we can use STAILQ_NEXT(pStationInfo, next).

See also:

• Being an access point

struct dhcps_lease
This structure is used by the wifi_softap_dhcps_lease() function to define the start
and end range of available IP addresses.

The fields contained within are:

• struct ip_addr start_ip

• struct ip_addr end_ip

Includes:

• user_interface.h

See also:

• The DHCP server

struct bss_info
This structure contains:

• STAILQ_ENTRY(bss_info) next

• uint8 bssid[6]

• uint8 ssid[32]

• uint8 channel

• sint8 rssi – The received signal strength indication

• AUTH_MODE authmode

• uint8 is_hidden

• sint16 freq_offset

To get the next entry, we can use STAILQ_NEXT(pBssInfoVar, next).

The AUTH_MODE is an enum

• AUTH_OPEN – No authentication. No challenge on any station connect.

• AUTH_WEP = 1

• AUTH_WPA_PSK = 2

Page 450

• AUTH_WPA2_PSK = 3

• AUTH_WPA_WPA2_PSK =4

See also:

• Scanning for access points

struct ip_info
This structure defines information about an interface possessed by the ESP8266. It
contains the following fields:

• struct ip_addr ip – The IP address of the interface.

• struct ip_addr netmask – The netmask used by the interface.

• struct ip_addr gw – The IP address of the gateway used by the interface.

See also:

• struct ip_addr
• IP4_ADDR

struct rst_info
Information about the current boot/restart

This structure contains:

• uint32 reason

• uint32 exccause

• uint32 epc1

• uint32 epc2

• uint32 epc3

• uint32 excvaddr

• uint32 depc

The reason field is an enum with the following values:

• 0 – Default restart – Normal start-up on power up

• 1 – Watch dog timer – Hardware watchdog reset

• 2 – Exception – An exception was detected

• 3 – Software watch dog timer – Software watchdog reset

• 4 – Soft restart

Page 451

• 5 – Deep sleep wake up

See also:

• Exception handling
• system_get_rst_info

struct espconn
This data structure is the representation of a connection between the ESP8266 and a
partner. It contains the "control blocks" and identification information … however it is
important to note that it is not always an opaque piece of data.

• enum espconn_type type – The type can be one of

◦ ESPCONN_INVALID

◦ ESPCONN_TCP – Identifies this connection as being of type TCP.

◦ ESPCONN_UDP – Identifies this connection as being of type UDP.

• enum espconn_state – The state can be one of

◦ ESPCONN_NONE – The state for an in initial connection.

◦ ESPCONN_WAIT

◦ ESPCONN_LISTEN

◦ ESPCONN_CONNECT

◦ ESPCONN_WRITE

◦ ESPCONN_READ

◦ ESPCONN_CLOSE

• union {
esp_tcp *tcp
esp_udp *udp

} proto – This field is a union of tcp and udp meaning that only one of them
should ever be used for an instance of this data structure. If the data structure is
used for TCP then the tcp property should be used while for UDP, the udp
property should be used.

• void *reverse – In the comments, this is flagged as a field reserved for user
code. It is possible the name chosen (reverse) is actually a typo in the header
file!!

• Other fields … there are other fields in the structure but they are not meant to be
read or written to by user applications. Ignore them. Using their values is
undefined and may have unexpected effects.

Page 452

See also:

• TCP
• esp_tcp
• esp_udp

esp_tcp
• uint8 local_ip[4] – The local IP address

• int local_port – The local port

• uint8 remote_ip[4] – The remote IP address

• int remote_port – The remote port

• Other fields … there are other fields in the structure but they are not meant to be
read or written to by user applications. Ignore them. Using their values is
undefined and may have unexpected effects.

See also:

• struct espconn

esp_udp
This data structure is used in the proto property of the struct espconn control block.

• int remote_port – The local IP address

• int local_port – The local port

• uint8 local_ip[4] – The remote IP address

• uint8 remote_ip[4] – The remote port

See also:

• struct espconn
• UDP

struct ip_addr
A representation of an IP address.

It contains the following field:

• uint32 addr – The actual 4 byte IP address.

Includes:

• ip_addr.h

See also:

• ipaddr_addr

Page 453

• IP4_ADDR
• ipaddr_t

ipaddr_t
A typedef for struct ipaddr.

See also:

• struct ip_addr

struct ping_option
The fields contained within the structure are:

• uint32 count – The number of times to transmit a ping

• uint32 ip – The IP address that is the target of the ping

• uint32 coarse_time

• recv_function recv_function

• sent_function sent_function

• void *reverse;

Includes:

• ping.h

See also:

• Ping request
• ping_start
• ping_regist_recv
• ping_regist_sent

struct ping_resp
The fields contained within the structure are:

• uint32 total_count

• uint32 resp_time

• uint32 seqno

• uint32 timeout_count

• uint32 bytes

• uint32 total_bytes

• uint32 total_time

Page 454

• sint8 ping_err – An indication of whether or not an error occurred. A value of 0
means no error.

Includes:

• ping.h

See also:

• Ping request
• ping_start
• ping_regist_recv
• ping_regist_sent

struct mdns_info
• char *host_name

• char *server_name

• uint16 server_port

• unsigned long ipAddr – This should be the IP address being offered.

• char *txt_data[10] – An array of options of the form "name = value".

See also:

• Multicast Domain Name Systems

enum phy_mode
The 802.11 physical mode to be used or being used.

• PHY_MODE_11B

• PHY_MODE_11G

• PHY_MODE_11N

GPIO_INT_TYPE
These are the possible triggers for an interrupt. This is an enum defined as follows:

• GPIO_PIN_INTR_DISABLE – Interrupts are disabled.

• GPIO_PIN_INTR_POSEDGE – Interrupt on a positive edge transition.

• GPIO_PIN_INTR_NEGEDGE – Interrupt on a negative edge transition.

• GPIO_PIN_INTR_ANYEDGE – Interrupt on any edge transition.

• GPIO_PIN_INTR_LOLEVEL – Interrupt when low.

• GPIO_PIN_INTR_HILEVEL – Interrupt when high.

Page 455

See also:

• gpio_pin_wakeup_enable

System_Event_t
The event type contains:

• uint32 event – The type of event that occurred. Can be

◦ EVENT_STAMODE_CONNECTED (0) – We have successfully connected to an
access point.

▪ uint8[32] event_info.connected.ssid – The SSID of the access point.

▪ uint8 ssid_len

▪ uint8[6] bssid

▪ event_info.connected.channel – The channel used to connect to the
access point.

◦ EVENT_STAMODE_DISCONNECTED (1)

▪ uint8[6] event_info.disconnected.bssid

▪ uint8[32] event_info.disconnected.ssid

▪ uint8 ssid_len

▪ uint8 event_info.disconnected.reason – The reason is one of the
following:

• REASON_UNSPECIFIED = 1

• REASON_AUTH_EXPIRE = 2

• REASON_AUTH_LEAVE = 3

• REASON_ASSOC_EXPIRE = 4

• REASON_ASSOC_TOOMANY = 5

• REASON_NOT_AUTHED = 6

• REASON_NOT_ASSOCED = 7

• REASON_ASSOC_LEAVE = 8

• REASON_ASSOC_NOT_AUTHED = 9

• REASON_DISASSOC_PWRCAP_BAD = 10

• REASON_DISASSOC_SUPCHAN_BAD = 11

• REASON_IE_INVALID = 13

Page 456

• REASON_MIC_FAILURE = 14

• REASON_4WAY_HANDSHAKE_TIMEOUT = 15

• REASON_GROUP_KEY_UPDATE_TIMEOUT = 16

• REASON_IE_IN_4WAY_DIFFERS = 17

• REASON_GROUP_CIPHER_INVALID = 18

• REASON_PAIRWISE_CIPHER_INVALID = 19

• REASON_AKMP_INVALID = 20

• REASON_UNSUPP_RSN_IE_VERSION = 21

• REASON_INVALID_RSN_IE_CAP = 22

• REASON_802_1X_AUTH_FAILED = 23

• REASON_CIPHER_SUITE_REJECTED = 24

• REASON_BEACON_TIMEOUT = 200

• REASON_NO_AP_FOUND = 201

◦ EVENT_STAMODE_AUTHMODE_CHANGE (2)

▪ event_info.auth_change.old_mode

▪ event_info.auth_change.new_mode

◦ EVENT_STAMODE_GOT_IP (3)

▪ event_info.got_ip.ip

▪ event_info.got_ip.mask

▪ event_info.got_ip.gw

◦ EVENT_SOFTAPMODE_STACONNECTED (4)

▪ event_info.sta_connected.mac

▪ event_info.sta_connected.aid

◦ EVENT_SOFTAPMODE_STADISCONNECTED (5)

▪ event_info.sta_disconnected.mac

▪ event_info.sta_disconnected.aid

◦ EVENT_STAMODE_DHCP_TIMEOUT

◦ EVENT_SOFTAPMODE_PROBEREQRECVED

• Event_Info_u event_info

This is a C Union containing data that is available as a function of the event type.

◦ Event_StaMode_Connected_t connected

Page 457

◦ Event_StaMode_Disconnected_t disconnected

◦ Event_StaMode_AuthMode_Change_t auth_change

◦ Event_StaMode_Got_IP_t got_ip

◦ Event_SoftAPMode_StaConnected_t sta_connected

◦ Event_SoftAPMode_StaDisconnected_t sta_disconnected

See also:

• Error: Reference source not found

espconn error codes
Constant Value

ESPCONN_OK 0

ESPCONN_MEM -1

ESPCONN_TIMEOUT -3

ESPCONN_RTE -4

ESPCONN_INPROGRESS -5

ESPCONN_ABRT -8

ESPCONN_RST -9

ESPCONN_CLSD -10

ESPCONN_CONN -11

ESPCONN_ARG -12

ESPCONN_ISCONN -15

ESPCONN_HANDSHAKE -28

ESPCONN_PROTO_MSG -61

STATUS
This is an enum defined as follows:

Enum Name Value

OK 0

FAIL 1

PENDING 2

BUSY 3

CANCEL 4

See also:

Page 458

• Error: Reference source not found

Page 459

Reference materials
There is a wealth of information available on the ESP8266 from a variety of sources.

C++ Programming

Simple class definition
Sample class header

#ifndef MyClass_h
#define MyClass_h

class MyClass {
public:

MyClass();
static void myStaticFunc();
void myFunc();

};
#endif

Sample class source

#include <MyClass.h>
MyClass::MyClass() {

// Constructor code here ...
}
String MyClass::myStaticFunc() {

// Code here ...
}
void MyClass::myFunc() {

// Code here ...
}

Lambda functions
Modern C++ has introduced lambda functions. These are C++ language functions that
don't have to be pre-declared but can instead be declared "inline". The functions have
no names associated with them but otherwise behave just like other functions.

See also:

• Lambda functions

Ignoring warnings
From time to time, your code may issue compilation warnings that you wish to suppress.
One way to achieve this is through the use of the C compile #pragma directive.

For example:

#pragma GCC diagnostic ignored "-Wformat"

Page 460

http://en.cppreference.com/w/cpp/language/lambda

See also:

• GCC Diagnostic Pragmas

Eclipse
Although not technically an ESP8266 story, I feel an understanding of the major
components of Eclipse will do no harm.

See also:

• Eclipse mars documentation

ESPFS breakdown
The ESPFS is a library which stores "files" within the flash of the ESP8266 and allows
an application to read them. It is part of the ESPHTTPD project.

EspFsInit
EspFsInitResult espFsInit(char *flashAddress)

Initialize the environment pointing to where the file data can be found. The return will be
one of:

• ESPFS_INIT_RESULT_OK

• ESPFS_INIT_RESULT_NO_IMAGE

• ESPFS_INIT_RESULT_BAD_ALIGN

espFsOpen
EspFsFile *espFsOpen(char *fileName)

Open the file specified by the file name and return a structure that is the "handle" to the
file or NULL if the file can not be found.

espFsClose
void espFsClose(EspFsFile *fileHandle)

Close the file that was previously opened by a call to espFsOpen(). No further reads
should be performed.

espFsFlags
int espFsFlags(EspFsFile *fileHandle)

Page 461

http://help.eclipse.org/mars/index.jsp
https://gcc.gnu.org/onlinedocs/gcc-4.9.2/gcc/Diagnostic-Pragmas.html#Diagnostic-Pragmas

espFsRead
int espFsRead(EspFsFile *fileHandle, char *buffer, int length)

Read up to length bytes from the file and store them at the memory location pointed to
by buffer. The actual number of bytes read is returned by the function call.

mkespfimage
This is not a function but a command which builds the binary data of the files to be
placed in flash memory.

mkespfimage [-c compressor] [-l compression_level]

• -c

◦ 0 – None

◦ 1 – Heatshrink

• -l

◦

ESPHTTPD breakdown
The ESPHTTPD library provides an implementation of an HTTP server running on an
ESP8266. In order to use this, we may wish to understand it better.

httpdInit
void httpdInit(HttpdBuiltInUrl *fixedUrls, int port)

Initialize the HTTP server running in the ESP. The port parameter is the port number
that the ESP will listen upon for incoming browser requests. The default port number
used by browsers is 80.

The HttpdBuiltInUrl is a typedef that provides mapping to URLs available on the
HTTP server. The fields contained within are:

• char *url – The url to match.

• cgiSendCallback cgiCb – The callback function to call when matched.

• const void *cgiArg – Parameters to pass into the callback function.

It is vital that the last element in the array have NULLs for all attributes. This serves as
a termination record. Here is an example definition for a minimal set of built in URLs:

HttpdBuiltInUrl builtInUrls[]={
{NULL, NULL, NULL}

};

The cgiSendCallback is a function with the following signature:

int (* functionName)(HttpdConnData *connData)

Page 462

Includes:

• httpd.h

httpdGetMimetype
char *httpdGetMimeType(char *url)

Examine the url passed in and by looking at its file type, determine the MIME type of
the data. If no file type is found, then the default MIME type is "text/html".

Includes:

• httpd.h

httpdUrlDecode
int httpdUrlDecode(char *val, int valLen, char *ret, int retLen)

Decode a URL according to URL decoding rules. The encoded url is supplied in val
with a length of valLen bytes. The resulting decoded url string will be stored at ret with
a maximum length of retLen. The actual length is returned by the function call itself.

Includes:

• httpd.h

httpdStartResponse
void httpdStartResponse(HttpdConnData *conn, int code)

Start sending the response data down the TCP connection to the browser. The code
value is the primary browser response code.

Includes:

• httpd.h

httpdSend
int httpdSend(HttpdConnData *conn, const char *data, int len)

Send data to the browser through the TCP connection. The data is supplied as data
and the len parameters is the number of bytes to write. If len == -1, then data is
assumed to be a NULL terminated string.

Includes:

• httpd.h

Page 463

httpdRedirect
void httpdRedirect(HttpdConnData *conn, char *newUrl)

Send an HTTP redirect instruction to the browser. The newUrl is the URL we wish the
browser to use.

Includes:

• httpd.h

httpdHeader
void httpdHeader(HttpdConnData *conn, const char *field, const char *val)

Send an HTTP header. The name of the header is supplied in the field parameter and
its value supplied in the val parameter.

Includes:

• httpd.h

httpdGetHeader
int httpdGetHeader(HttpdConnData *conn, char *header, char *ret, int retLen)

Search the browser supplied data header looking for a header that matches the header
parameter. If found, return the header value at the buffer pointed to by ret which must
be at least retLen bytes long.

Includes:

• httpd.h

httpdFindArg
int httpdFindArg(char *line, char *arg, char *buff, int buffLen)

Given a line of text, look for a parameter of the form "name=value" within the line. If the
name matches our passed in name, then return the value.

Includes:

• httpd.h

httpdEndHeaders
void httpdEndHeaders(HttpdConnData *conn)

Conclude the output of headers to the output stream.

Includes:

Page 464

• httpd.h

Makefiles
Books have been written on the language and use of Makefiles and our goal is not to
attempt to rewrite those books. Rather, here is a cheaters guide to beginning to
understand how to read them.

A general rule in a make file has the form:

target: prereqs …
receipe ...

Variables are defined in the form:

name=value

We can use the value of a variable with either $(name) or ${name}.

Another form of definition is:

name:=value

Here, the value is locked to its value at the time of definition and will not be recursively
expanded.

Some variables have well defined meanings:

Variable Meaning

CC C compiler command

AR Archiver command

LD Linker command

OBJCOPY Object copy command

OBJDUMP Object dump command

We can use the value of a previously defined variable in other variable definitions. For
example:

XTENSA_TOOLS_ROOT ?= c:/Espressif/xtensa-lx106-elf/bin
CC := $(XTENSA_TOOLS_ROOT)/xtensa-lx106-elf-gcc

defines the C compiler as an absolute path based on the value of a previous variable.

Special expansions are:

• $@ - The name of the target

• $< - The first prereq

Comments are lines that start with an "#" character.

Wildcards are:

Page 465

• * - All characters

• ? - One character

• […] - A set of characters

Make can be invoked recursively using

make -C <directoryName>

Imagine we wanted to build a list of source files by naming directories and the list of
source files then becomes all the ".c" files, in those directories? How can we achieve
that?

SRC_DIR = dir1 dir2
SRC := $(foreach sdir, $(SRC_DIR), $(wildcard $(sdir)/*.c))
OBJ := $(patsubst %.c, $(BUILD_BASE)/%.o, $(SRC))

The puzzle

Imagine a directory structure with

a
a1.c
a2.c

b
b1.c
b2.c

goal is to compile these to

build
a

a1.o
a2.o

b
b1.o
b2.o

We know how to compile x.c → x.o

MODULES=a b
BUILD_BASE=build
BUILD_DIRS=$(addprefix $(BUILD_BASE)/,$(MODULES))
SRC=$(foreach dir, $(MODULES), $(wildcard $(dir)/*.c))
Replace all x.c with x.o
OBJS=$(patsubst %.c,%.o,$(SRC))

all:
echo $(OBJS)
echo $(wildcard $(OBJS)/*.c)
echo $(foreach dir, $(OBJS), $(wildcard $(dir)/*.c))
echo "SRC: " $(SRC)

test: checkdirs $(OBJS)
echo "Compiled " $(SRC)

Page 466

.c.o:
echo "Compiling $(basename $<)"
$(CC) -c $< -o build/$(addsuffix .o, $(basename $<))

checkdirs: $(BUILD_DIRS)

$(BUILD_DIRS):
mkdir -p $@

clean:
rm -f $(BUILD_DIRS)

Makefiles also have interesting commands:

• $(shell <shell command>) - Run a shell commands

• $(info "text"), $(error "text"), $(warning "text") – Generate output from make

See also:

• GNU make
• Makefile cheat sheet

Forums
There are a couple of excellent places to ask questions, answer other folks questions
and read about questions and answers of the past.

• Espressif ESP8266 BBS – A moderated forum run by Espressif. The primary source for SDK downloads and the source
of much of the core materials.

• ESP8266 Community Forum – A set of fora dedicated to the ESP8266 run for and by the ESP8266 user community.
• ESP32 Community Forum – The ESP32 community forum where all discussions of ESP32 are happening.

Reference documents
Espressif distributes PDF and Excel spreadsheets containing core information about the
ESP8266. These can be downloaded freely from the web.

• ESP8266 Technical Reference – v1.2

• ESP8266 FAQs

• ESP8266 SDK Getting Started Guide – v2.3

• ESP8266 Non-OS SDK API Reference – v2.0

• ESP-WROOM-32 Datasheet – 2016-08-22

• ESP32 Technical Reference Manual – 2016-09-23

• ESP32_RTOS_SDK

Old documents

• 0A-ESP8266 Datasheet v4.3
• 0B-ESP8266 Hardware User Guide v1.1
• 0C-ESP8266 WROOM WiFi Module Datasheet v0.3
• 0D-ESP8266 Pin List Release 2014-11-15

Page 467

http://bbs.espressif.com/download/file.php?id=442
http://bbs.espressif.com/download/file.php?id=518
http://bbs.espressif.com/download/file.php?id=562
http://bbs.espressif.com/download/file.php?id=520
http://bbs.espressif.com/download/file.php?id=520
https://github.com/espressif/ESP31_RTOS_SDK/blob/master/documents/ESP32__RTOS_SDK_API%20Reference.pdf
file:///C:/Users/Kolban/Downloads/esp32_technical_reference_manual_en.pdf
file:///C:/Users/Kolban/Downloads/esp32_technical_reference_manual_en.pdf
file:///C:/Users/Kolban/Downloads/esp32_technical_reference_manual_en.pdf
https://espressif.com/sites/default/files/documentation/esp_wroom_32_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp_wroom_32_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp_wroom_32_datasheet_en.pdf
http://www.espressif.com/sites/default/files/documentation/2c-esp8266_non_os_sdk_api_reference_en.pdf
http://www.espressif.com/sites/default/files/documentation/2c-esp8266_non_os_sdk_api_reference_en.pdf
http://www.espressif.com/sites/default/files/documentation/2c-esp8266_non_os_sdk_api_reference_en.pdf
http://espressif.com/sites/default/files/documentation/2a-esp8266-sdk_getting_started_guide_en.pdf
http://espressif.com/sites/default/files/documentation/2a-esp8266-sdk_getting_started_guide_en.pdf
http://espressif.com/sites/default/files/documentation/2a-esp8266-sdk_getting_started_guide_en.pdf
http://espressif.com/sites/default/files/documentation/esp8266_faq_en.pdf
http://espressif.com/sites/default/files/documentation/esp8266-technical_reference_en.pdf
http://esp32.com/
http://www.esp8266.com/
http://bbs.espressif.com/
http://www.schacherer.de/frank/technology/tools/make.html
https://www.gnu.org/software/make/manual/html_node/index.html

• 2A-ESP8266 IOT SDK User Manual V1.4
• 2B-ESP8266 SDK IOT Demo V1.3
• 2C-ESP8266 SDK Programming Guide V1. 5
• 4A-ESP8266 AT Instruction Set V1.5
• 4B-ESP8266 AT Command Examples V1.3
• 4C-ESP8266 AT upgrade example
• 8A-ESP8266 Interface GPIO v 0.5
• 8B-ESP8266 Interface GPIO Registers Release 2014-11-15
• 8C-ESP8266 Interface I2C v1.0
• 8D-ESP8266 Interface PWM v1.1
• 8E-ESP8266 Interface UART v0.2
• 8F-ESP8266 Interface UART Registers v0.1
• 8G-ESP8266 Interface Infrared Remote Control v0.3
• 8H-ESP8266 Interface SDIO SPI M o de v0.1-2
• 8I-ESP8266 Interface SPI-WiFi Passthrough 1 – interrupt mode v0.1
• 8J-ESP8266 Interface SPI-WiFi Passthrough 2 – interrupt mode v1.0
• 8K-ESP8266 Sniffer Introduction v0.3
• 8L-ESP8266 Interface SPI Registers Release 2014-11-18
• 8M-ESP8266 Interface Timer Registers Release 2014-11-18
• 8N-ESP8266 SPI Reference v1.0
• 8O-ESP8266 SPI Overlap & Display Application Guide v0.1
• 8P-ESP8266 I2S Module Description v1.0
• 8Q-ESP8266 HSPI Host Multi-device API v1.0
• 9A-ESP8266 FRC Timer Introduction (not yet published)
• 9B-ESP8266 Sleep Mode Function Description v1.0
• 20A-ESP8266 RTOS SDK Programming Guide V1. 3.0
• 20B-ESP8266 RTOS SDK API Reference V1.3.0
• 30A-ESP8266 Mesh User Guide V1.0
• 99A-ESP8266 Flash RW Operation v0.2
• 99B-ESP8266 Timer (not yet published)
• 99C-ESP8266 OTA Upgrade v1.6

Here are similar reference documents for the ESP32

• ESP32 RTOS SDK API Reference v1.1.0

Github
There are a number of open source projects built on top of and around the ESP8266
that can be found on Github. Here is a list of links to some of these projects that are
very well worth having a look:

• EspressifApp
• jantje/arduion-eclipse-plugin
• eriksl/esp8266-universal-io-bridge
• CHERTS/esp8266-devkit
• ESPHTTPD project

◦ Spritetm/esphttpd
◦ Spritetm/libesphttpd

Github quick cheats
When working with open source projects, there are times when we would like to perform
some tasks that involve multiple commands. Here we try and capture some of the more
interesting ones that are used in ESP8266 projects from time to time.

Page 468

https://github.com/Spritetm/libesphttpd
https://github.com/Spritetm/esphttpd
https://github.com/CHERTS/esp8266-devkit
https://github.com/eriksl/esp8266-universal-io-bridge
https://github.com/jantje/arduino-eclipse-plugin
https://github.com/espressifapp
http://esp32.com/download/file.php?id=79
http://bbs.espressif.com/download/file.php?id=483
http://bbs.espressif.com/download/file.php?id=336
http://bbs.espressif.com/download/file.php?id=672
http://bbs.espressif.com/download/file.php?id=935
http://bbs.espressif.com/download/file.php?id=933
http://bbs.espressif.com/download/file.php?id=933
http://bbs.espressif.com/download/file.php?id=536
http://bbs.espressif.com/download/file.php?id=536
http://bbs.espressif.com/download/file.php?id=536
http://bbs.espressif.com/download/file.php?id=577
http://bbs.espressif.com/download/file.php?id=658
http://bbs.espressif.com/download/file.php?id=744
http://bbs.espressif.com/download/file.php?id=744
http://bbs.espressif.com/download/file.php?id=571
http://bbs.espressif.com/download/file.php?id=512
http://bbs.espressif.com/download/file.php?id=511
http://bbs.espressif.com/download/file.php?id=511
http://bbs.espressif.com/download/file.php?id=572
http://bbs.espressif.com/download/file.php?id=743
http://bbs.espressif.com/download/file.php?id=743
http://bbs.espressif.com/download/file.php?id=660
http://bbs.espressif.com/download/file.php?id=660
http://bbs.espressif.com/download/file.php?id=659
http://bbs.espressif.com/download/file.php?id=659
http://bbs.espressif.com/download/file.php?id=659
http://bbs.espressif.com/download/file.php?id=659
http://bbs.espressif.com/download/file.php?id=573
http://bbs.espressif.com/download/file.php?id=339
http://bbs.espressif.com/download/file.php?id=574
http://bbs.espressif.com/download/file.php?id=531
http://8C-ESP8266__Interface_I2C__EN_v1.0.pdf/
http://8C-ESP8266__Interface_I2C__EN_v1.0.pdf/
http://bbs.espressif.com/download/file.php?id=515
http://bbs.espressif.com/download/file.php?id=899
http://bbs.espressif.com/download/file.php?id=899
http://bbs.espressif.com/download/file.php?id=899
http://bbs.espressif.com/download/file.php?id=921
http://bbs.espressif.com/download/file.php?id=921
http://bbs.espressif.com/download/file.php?id=1085
http://bbs.espressif.com/download/file.php?id=1085
http://bbs.espressif.com/download/file.php?id=988
http://bbs.espressif.com/download/file.php?id=988
http://bbs.espressif.com/download/file.php?id=988
http://bbs.espressif.com/download/file.php?id=834
http://bbs.espressif.com/download/file.php?id=834
http://bbs.espressif.com/download/file.php?id=833
http://bbs.espressif.com/download/file.php?id=833

git remote -v
git remote add upstream <URL>
git fetch upstream
git merge upstream/master

See also:

• Simple guide to forks in GitHub and Git

SDK
The Software Development Kit (SDK) is published by Espressif and is required to build
C based applications. It contains vital documentation in the form of PDF that don't
appear to be available elsewhere.

• ESP8266 SDK v1. 4 .0

esp-open-sdk

cygwin packages

bison

flex

texinfo

wget

patch

libtool

automake

gettext-devl

Perform git clone --recursive <Repo> from within shell.

Single board computer comparisons
There are a number of single board computers on the market. Although the ESP8266 is
usually not considered one of these, a lot of folks are using it as such. Let us put up a
table and contrast the ESP8266 against these computers:

Page 469

http://bbs.espressif.com/viewtopic.php?f=46&t=850
http://bbs.espressif.com/viewtopic.php?f=46&t=850
http://bbs.espressif.com/viewtopic.php?f=46&t=850
http://www.dataschool.io/simple-guide-to-forks-in-github-and-git/

Device CPU RAM Flash Wifi GPIO OS Cost

ESP8266 80MHz 80K 512K Y 9 FreeRTOS $4

ESP32 160MHz 512K Var Y ? FreeRTOS ??

Arduino 20MHz 2K 32K N ? N/A $2

Pi Zero 1GHz 512MB SD N ? Linux $5

Omega 400MHz 64MB 16MB Y 18 Linux $19

Omega 2

C.H.I.P. 1GHz 512MB 4GB Y 8+ Linux $9

Heroes
Within the ESP8266 user community there are individuals that I consider to have
pushed the boundaries of knowledge further or have developed tools that dramatically
improve working with the devices. I want to take a few moments and call out these
good folks without whom all our ESP8266 travels would be harder:

Max Filippov – jcmvbkbc – GCC compiler for Xtensa
• Web site: Github – https://github.com/jcmvbkbc

A compiler for C based on GCC that compiles to Xtensa binary for flashing. It is
doubtful that any useful work could be performed without this contribution.

Ivan Grokhotkov – igrr – Arduino IDE for ESP8266 development
• Web site: Github – esp8266/Arduino

Page 470

https://github.com/esp8266/Arduino
https://github.com/jcmvbkbc
http://nextthing.co/
https://onion.io/omega
https://www.raspberrypi.org/products/pi-zero/
https://www.arduino.cc/
http://espressif.com/en/products/esp8266/

An implementation of technology that allows one to develop ESP8266 applications
using the Arduino IDE as well as libraries that map Arduino functions to ESP8266
equivalents or near equivalents.

jantje – Arduino Eclipse
• Web site: Arduino Eclipse

• Web site: Github – jantje/arduino-eclipse-plugin

Although not technically for just the ESP8266, the Arduino Eclipse project is important.
It provides the ability to build Arduino applications using Eclipse which has a superior
development environment for more experienced programmers. Combine this with the
Arduino ESP8266 project and we have a fantastic environment at our disposal.

Richard Sloan – ESP8266 Community owner
• Web site: http://www.esp8266.com/index.php

Without question, anyone who touches the ESP8266 should visit this community web
site. The forum found there is extremely rich in knowledge and heavily trafficked. Folks
new to the ESP8266 and experts alike are all welcomed. Simply come along, and join
the fun. Richard is also the owner of the themindfactory.com.

Mikhail Grigorev – CHERTS – Eclipse for ESP8266 development
• Web site: Project Unofficial Development Kit for Espressif ESP8266

• Web site: Github – CHERTS/esp8266-devkit

An extraordinarily well polished set of artifacts and instructions for building ESP8266 C
applications within the Eclipse development environment.

Page 471

https://github.com/CHERTS/esp8266-devkit
http://programs74.ru/udkew-en.html
http://www.themindfactory.com/
http://www.esp8266.com/index.php
https://github.com/jantje/arduino-eclipse-plugin
http://eclipse.baeyens.it/

Mmiscool – Basic Interpreter
• Website: http://www.esp8266basic.com

• Website: forums

A Basic interpreter/environment for writing applications in the Basic programming
language. The author devotes a lot of time and energy into continued development and
provides very fast response to user's questions.

Areas to Research
• Hardware timers … when do they get called?

• If I define functions in a library called libcommon.a, what is added to the compiled
application when I link with this library? Is it everything in the library or just the
object files that are referenced?

• What is the memory map/layout of the ESP8266?

• How much RAM is installed and available for use?

• Document the information contained here …
http://bbs.espressif.com/viewtopic.php?p=3066#p3066

• What is SSDP and how does it related to the SSDP libraries?

• Study Device Hive - http://devicehive.com/

• Document using Visual Micro debugger with Visual Studio.
http://www.visualmicro.com/

• Power management

• MQTT support

• Research the semantics of a wifi_station_connect() when we are already
connected.

• Drive an Arduino as a slave to an ESP8266.

Page 472

http://www.visualmicro.com/
http://devicehive.com/
http://bbs.espressif.com/viewtopic.php?p=3066#p3066
http://www.esp8266.com/viewforum.php?f=38
http://www.esp8266basic.com/

	Introduction
	Overview
	The ESP8266
	The ESP32
	Maturity
	The ESP8266 specification
	The ESP32 specification
	ESP8266 Modules
	ESP-12
	ESP-1
	Adafruit HUZZAH
	NodeMCU devKit
	node.IT (aka ESP-210)
	SparkFun WiFi Shield – ESP8266
	Espresso Lite
	Wemos D1
	Oak by digistump

	ESP32 Modules
	ESP32-DevKitC

	Connecting to the ESP8266
	WiFi Theory
	AT Command Programming
	Commands
	Installing the latest AT command processor

	Assembling circuits
	USB to UART converters
	Breadboards
	Power
	Multi-meter / Logic probe / Logic Analyzer
	Sundry components
	Physical construction
	Recommended setup for programming ESP8266
	Configuration for flashing the device

	Programming
	Boot mode
	ESP8266 – Software Development Kit (SDK)
	Include directories

	ESP32 – Espressif IoT Development framework
	How IDF works
	Error handling
	The build environment menu configuration
	Creating a build environment of the Raspberry Pi 3

	Compiling
	ESP32 – Compilation
	ESP32 – Flashing
	Loading a program into the ESP8266
	Programming environments
	Compilation tools
	ar
	esptool.py
	esptool-ck
	gcc
	gen_appbin.py
	make
	nodemcu-flasher
	nm
	objcopy
	objdump
	xxd

	ESP8266 Linking
	ESP32 Linking
	Flashing over the air – FOTA
	Debugging
	ESP-IDF logging
	Logging to UART1
	Run a Blinky
	Dumping IP Addresses
	Exception handling
	Using a debugger (GDB)
	Debugging and testing TCP and UDP connections
	Android – Socket Protocol
	Android – UDP Sender/Receiver
	Windows – Hercules
	Curl
	Eclipse – TCP/MON
	httpbin.org

	ESP8266 Architecture
	Custom programs

	WiFi at startup
	Working with WiFi – ESP8266
	Scanning for access points
	Defining the operating mode
	Handling WiFi events
	Station configuration
	Connecting to an access point
	Control and data flows when connecting as a station
	Being an access point
	The DHCP server
	Current IP Address, netmask and gateway
	WiFi Protected Setup – WPS

	Working with WiFi – ESP32
	Working with TCP/IP
	The espconn architecture
	TCP
	Sending and receiving TCP data
	Flow control
	TCP Error handling

	UDP
	Broadcast with UDP

	Ping request
	Name Service
	Multicast Domain Name Systems
	Installing Bonjour

	Working with SNTP

	ESP-NOW
	GPIOs
	Pullup and pull down settings
	GPIO Interrupt handling
	Expanding the number of available GPIOs
	ESP_PCF8574 C library
	PCF8574 JavaScript Library

	Working with I2C
	Working with SPI – Serial Peripheral Interface
	Hardware SPI
	The MetalPhreak/ESP8266_SPI_Driver

	Working with serial
	ESP8266 Task handling
	Timers and time
	ESP32 – Working with Non Volatile Storage
	Working with memory
	Working with flash memory
	Pulse Width Modulation – PWM
	Analog to digital conversion
	Sleep modes
	Watchdog timer
	Yielding control

	Security
	Mapping from Arduino
	Spiffs File System

	Partner TCP/IP APIs
	TCP/IP Sockets
	Handling errors
	Sockets – accept()
	Sockets – bind()
	Sockets – close()
	Sockets – closesocket()
	Sockets – connect()
	Sockets – fcntl()
	Sockets – freeaddrinfo()
	Sockets – getaddrinfo()
	Sockets – gethostbyname()
	Sockets – getpeername()
	Sockets – getsockname()
	Sockets – getsockopt()
	Sockets – htonl()
	Sockets – htons()
	Sockets – inet_ntop()
	Sockets – inet_pton()
	Sockets – ioctlsocket()
	Sockets – listen()
	Sockets – read()
	Sockets – recv()
	Sockets – recvfrom()
	Sockets – select()
	Sockets – send()
	Sockets – sendto()
	Sockets – setsockopt()
	Sockets – shutdown()
	Sockets – socket()
	Sockets – write()
	Socket data structures
	Sockets – struct sockaddr
	Sockets – struct sockaddr_in

	Java Sockets
	WebSockets
	A WebSocket browser app
	FreeRTOS WebSocket
	Mongoose WebSocket

	Web Servers
	Mongoose

	Programming using Eclipse
	Installing the Eclipse Serial terminal
	Web development using Eclipse

	Programming using the Arduino IDE
	Implications of Arduino IDE support
	Installing the Arduino IDE with ESP8266 support
	Tips for working in the Arduino environment
	Initialize global classes in setup()
	Invoking Espressif SDK API from a sketch
	Exception handling

	The SPIFFS file system
	The mkspiffs command

	The architecture of the Arduino IDE support
	Building ESP Arduino apps using the Eclipse IDE
	Reasons to consider using Eclipse over Arduino IDE
	Notes on using the Eclipse Arduino package

	Arduino ESP Libraries
	The WiFi library
	WiFi.begin
	WiFi.beingSmartConfig
	WiFi.beginWPSConfig
	WiFi.BSSID
	WiFi.BSSIDstr
	WiFi channel
	WiFi.config
	WiFi.disconnect
	WiFi.encryptionType
	WiFi.gatewayIP
	WiFi.getNetworkInfo
	WiFi.hostByName
	WiFi.hostname
	WiFi.isHidden
	WiFi.localIP
	WiFi.macAddress
	WiFi.mode
	WiFi.printDiag
	WiFi.RSSI
	WiFi.scanComplete
	WiFi.scanDelete
	WiFi.scanNetworks
	WiFi.smartConfigDone
	WiFi.softAP
	WiFi.softAPConfig
	WiFi.softAPdisconnect
	WiFi.softAPmacAddress
	WiFi.softAPIP
	WiFi.SSID
	WiFi.status
	WiFi.stopSmartConfig
	WiFi.subnetMask
	WiFi.waitForConnectResult

	WiFiClient
	WiFiClient
	WiFiClient.available
	WiFiClient.connect
	WiFiClient.connected
	WiFiClient.flush
	WiFiClient.getNoDelay
	WiFiClient.peek
	WiFiClient.read
	WiFiClient.remoteIP
	WiFiClient.remotePort
	WiFiClient.setLocalPortStart
	WiFiClient.setNoDelay
	WiFiClient.status
	WiFiClient.stop
	WiFiClient.stopAll
	WiFiClient.write

	WiFiServer
	WiFiServer
	WiFiServer.available
	WiFiServer.begin
	WiFiServer.getNoDelay
	WiFiServer.hasClient
	WiFiServer.setNoDelay
	WiFiServer.status
	WiFiServer.write

	IPAddress
	ESP8266WebServer
	ESP8266WebServer
	ESP8266WebServer.arg
	ESP8266WebServer.argName
	ESP8266WebServer.args
	ESP8266WebServer.begin
	ESP8266WebServer.client
	ESP8266WebServer.handleClient
	ESP8266WebServer.hasArg
	ESP8266WebServer.method
	ESP8266WebServer.on
	ESP8266WebServer.onFileUpload
	ESP8266WebServer.onNotFound
	ESP8266WebServer.send
	ESP8266WebServer.sendContent
	ESP8266WebServer.sendHeader
	ESP8266WebServer.setContentLength
	ESP8266WebServer.streamFile
	ESP8266WebServer.upload
	ESP8266WebServer.uri

	ESP8266mDNS library
	MDNS.addService
	MDNS.begin
	MDNS.update

	I2C – Wire
	Wire.available
	Wire.begin
	Wire.beginTransmission
	Wire.endTransmission
	Wire.flush
	Wire.onReceive
	Wire.onReceiveService
	Wire.onRequest
	Wire.onRequestService
	Wire.peek
	Wire.pins
	Wire.read
	Wire.requestFrom
	Wire.setClock
	Wire.write

	Ticker library
	Ticker
	attach
	attach_ms
	detach
	once
	once_ms

	EEPROM library
	EEPROM.begin
	EEPROM.commit
	EEPROM.end
	EEPROM.get
	EEPROM.getDataPtr
	EEPROM.put
	EEPROM.read
	EEPROM.write

	SPIFFS
	SPIFFS.begin
	SPIFFS.open
	SPIFFS.openDir
	SPIFFS.remove
	SPIFFS.rename
	File.available
	File.close
	File.flush
	File.name
	File.peek
	File.position
	File.read
	File.seek
	File.size
	File.write
	Dir.fileName
	Dir.next
	Dir.open
	Dir.openDir
	Dir.remove
	Dir.rename

	ESP library
	ESP.deepSleep
	ESP.eraseConfig
	ESP.getBootMode
	ESP.getBootVersion
	ESP.getChipId
	ESP.getCpuFreqMHz
	ESP.getCycleCount
	ESP.getFlashChipId
	ESP.getFlashChipMode
	ESP.getFlashChipRealSize
	ESP.getFlashChipSize
	ESP.getFlashChipSizeByChipId
	ESP.getFlashChipSpeed
	ESP.getFreeHeap
	ESP.getFreeSketchSpace
	ESP.getResetInfo
	ESP.getResetInfoPtr
	ESP.getSdkVersion
	ESP.getSketchSize
	ESP.getVcc
	ESP.reset
	ESP.restart
	ESP.updateSketch
	ESP.wdtDisable
	ESP.wdtEnable
	ESP.wdtFeed

	String library
	Constructor
	String.c_str
	String.reserve
	String.length
	String.concat
	String.equalsIgnoreCase
	String.startsWith
	String.endsWith
	String.charAt
	String.setCharAt
	String.getBytes
	String toCharArray
	String.indexOf
	String.lastIndexOf
	String.substring
	String.replace
	String.remove
	String.toLowerCase
	String.toUpperCase
	String.trim
	String.toInt
	String.toFloat

	Programming with JavaScript
	Smart.js
	Smart.js GPIO
	Setting up an HTTP server
	Debugging

	Espruino
	Editing and deploying code
	Working with variables
	Booting Espruino
	WiFi access
	Writing network socket applications using Espruino
	Writing a REST client using Espruino
	Writing a Web Server using Espruino

	Working with GPIO
	Working with I2C and JavaScript
	Debugging JavaScript
	Editing JavaScript
	Espruino ESP8266 Libraries
	Core JavaScript capabilities
	Running code at intervals
	Working with GPIO
	SPI

	Key differences from JavaScript
	Building Espruino

	Programming with Lua
	ESPlorer IDE
	GPIO with Lua
	WiFi with Lua
	Networking with Lua

	Programming with Basic
	Integration with Web Apps
	REST Services
	REST protocol
	ESP8266 as a REST client
	Making a REST request using Mongoose

	ESP8266 as a REST service provider

	Tasker
	AutoRemote
	DuckDNS

	Mobile apps
	Blynk

	Sample Snippets
	Forming a TCP connection

	Sample applications
	Sample – Light an LED based on the arrival of a UDP datagram
	Sample – Ultrasonic distance measurement
	Sample – WiFi Scanner
	Sample – Working with micro SD cards
	Sample – Playing audio from an event
	Sample – A changeable mood light
	Sample – Bootstrapping networking

	Sample Libraries
	Function list
	authModeToString
	checkError
	delayMilliseconds
	dumpBSSINFO
	dumpEspConn
	dumpRestart
	dumpState
	errorToString
	eventLogger
	eventReasonToString
	flashSizeAndMapToString
	setAsGpio
	setupBlink
	toHex

	Using FreeRTOS
	The architecture of a task in FreeRTOS
	Lists within RTOS
	ESP8266 – Building apps for RTOS
	Consoles with RTOS
	Debugging tips

	Developing solutions on Linux
	Building a Linux environment

	API Reference
	FreeRTOS API reference
	eTaskGetState
	pcTaskGetName
	xTaskCreate
	xTaskCreatePinnedToCore
	vTaskDelay
	vTaskDelayUntil
	vTaskDelete
	xTaskGetCurrentTaskHandle
	xTaskGetTickCount
	vTaskList
	vTaskPrioritySet
	vTaskResume
	xTaskResumeAll
	vTaskResumeFromISR
	vTaskSuspend
	vTaskSuspendAll
	xQueueCreate
	vQueueDelete
	xQueuePeek
	xQueueReceive
	xQueueSend
	xQueueSendToBack
	xQueueSendToFront
	vSemaphoreCreateBinary
	xSemaphoreCreateCounting
	vSemaphoreGive
	xSemaphoreGiveFromISR
	vSemaphoreTake
	pvPortMalloc
	pvPortFree
	List Processing
	vListInitialise
	vListInitialiseItem
	vListInsert
	vListInsertEnd

	lwip Reference
	Sockets

	Timer functions
	os_delay_us
	os_timer_arm
	os_timer_disarm
	os_timer_setfn
	system_timer_reinit
	os_timer_arm_us
	hw_timer_init
	hw_timer_arm
	hw_timer_set_func

	System Functions
	system_restore
	system_restart
	system_init_done_cb
	system_get_chip_id
	system_get_vdd33
	system_adc_read
	system_deep_sleep
	system_deep_sleep_set_option
	system_phys_set_rfoption
	system_phys_set_max_tpw
	system_phys_set_tpw_via_vdd33
	system_set_os_print
	system_print_meminfo
	system_show_malloc
	system_get_free_heap_size
	system_os_task
	system_os_post
	system_get_time
	system_get_rtc_time
	system_rtc_clock_cali_proc
	system_rtc_mem_write
	system_rtc_mem_read
	system_uart_swap
	system_uart_de_swap
	system_get_boot_version
	system_get_userbin_addr
	system_get_boot_mode
	system_restart_enhance
	system_update_cpu_freq
	system_get_cpu_freq
	system_get_flash_size_map
	system_get_rst_info
	system_get_sdk_version()
	system_soft_wdt_feed
	system_soft_wdt_stop
	system_soft_wdt_restart
	os_memset
	os_memcmp
	os_memcpy
	os_malloc
	os_calloc
	os_realloc
	os_zalloc
	os_free
	os_bzero
	os_delay_us
	os_printf
	os_install_putc1
	os_random
	os_get_random
	os_strlen
	os_strcat
	os_strchr
	os_strcmp
	os_strcpy
	os_strncmp
	os_strncpy
	os_sprintf
	os_strstr

	SPI Flash
	spi_flash_get_id
	spi_flash_erase_sector
	spi_flash_read
	spi_flash_set_read_func
	system_param_save_with_protect
	spi_flash_write
	system_param_load

	WiFi – ESP-IDF
	esp_wifi_clear_fast_connect
	esp_wifi_connect
	esp_wifi_deinit
	esp_wifi_disconnect
	esp_wifi_free_station_list
	esp_wifi_get_ap_list
	esp_wifi_get_ap_num
	esp_wifi_get_auto_connect
	esp_wifi_get_bandwidth
	esp_wifi_get_channel
	esp_wifi_get_config
	esp_wifi_get_country
	esp_wifi_get_mac
	esp_wifi_get_mode
	esp_wifi_get_promiscuous
	esp_wifi_get_protocol
	esp_wifi_get_ps
	esp_wifi_get_station_list
	esp_wifi_init
	esp_wifi_kick_station
	esp_wifi_reg_rxcb
	esp_wifi_scan_start
	esp_wifi_scan_stop
	esp_wifi_set_auto_connect
	esp_wifi_set_bandwidth
	esp_wifi_set_channel
	esp_wifi_set_config
	esp_wifi_set_country
	esp_wifi_set_mac
	esp_wifi_set_mode
	esp_wifi_set_promiscuous_rx_cb
	esp_wifi_set_promiscuous
	esp_wifi_set_protocol
	esp_wifi_set_ps
	esp_wifi_set_storage
	esp_wifi_set_vendor_ie
	esp_wifi_set_vendor_ie_cb
	esp_wifi_start
	esp_wifi_stop

	WiFi – ESP8266
	wifi_fpm_close
	wifi_fpm_do_sleep
	wifi_fpm_do_wakeup
	wifi_fpm_get_sleep_type
	wifi_fpm_open
	wifi_fpm_set_sleep_type
	wifi_fpm_set_wakeup_cb
	wifi_get_channel
	wifi_get_ip_info
	wifi_get_macaddr
	wifi_get_opmode
	wifi_get_opmode_default
	wifi_get_phy_mode
	wifi_get_sleep_type
	wifi_get_user_fixed_rate
	wifi_get_user_limit_rate_mask
	wifi_set_broadcast_if
	wifi_get_broadcast_if
	wifi_set_sleep_type
	wifi_promiscuous_enable
	wifi_promiscuous_set_mac
	wifi_register_rfid_locp_recv_cb
	wifi_register_send_pkt_freedom_cb
	wifi_register_user_ie_manufacturer_recv_cb
	wifi_rfid_locp_recv_close
	wifi_rfid_locp_recv_open
	wifi_send_pkt_freedom
	wifi_set_channel
	wifi_set_event_handle_cb
	wifi_set_ip_info
	wifi_set_macaddr
	wifi_set_opmode
	wifi_set_opmode_current
	wifi_set_phy_mode
	wifi_set_promiscuous_rx_cb
	wifi_set_sleep_type
	wifi_set_user_fixed_rate
	wifi_set_user_ie
	wifi_set_user_limit_rate_mask
	wifi_set_user_rate_limit
	wifi_set_user_sup_rate
	wifi_status_led_install
	wifi_status_led_uninstall
	wifi_unregister_rfid_locp_recv_cb
	wifi_unregister_send_pkt_freedom_cb
	wifi_unregister_user_ie_manufacturer_recv_cb

	WiFi Station
	wifi_station_ap_change
	wifi_station_ap_number_set
	wifi_station_connect
	wifi_station_dhcpc_start
	wifi_station_dhcpc_status
	wifi_station_dhcpc_stop
	wifi_station_disconnect
	wifi_station_get_ap_info
	wifi_station_get_auto_connect
	wifi_station_get_config
	wifi_station_get_config_default
	wifi_station_get_connect_status
	wifi_station_get_current_ap_id
	wifi_station_get_hostname
	wifi_station_get_reconnect_policy
	wifi_station_get_rssi
	wifi_station_scan
	wifi_station_set_auto_connect
	wifi_station_set_cert_key
	wifi_station_clear_cert_key
	wifi_station_set_config
	wifi_station_set_config_current
	wifi_station_set_reconnect_policy
	wifi_station_set_hostname

	WiFi SoftAP
	wifi_softap_dhcps_start
	wifi_softap_dhcps_status
	wifi_softap_dhcps_stop
	wifi_softap_free_station_info
	wifi_softap_get_config
	wifi_softap_get_config_default
	wifi_softap_get_dhcps_lease
	wifi_softap_get_dhcps_lease_time
	wifi_softap_get_station_info
	wifi_softap_get_station_num
	wifi_softap_reset_dhcps_lease_time
	wifi_softap_set_config
	wifi_softap_set_config_current
	wifi_softap_set_dhcps_lease
	wifi_softap_set_dhcps_lease_time
	wifi_softap_dhcps_offer_option

	WiFi WPS
	wifi_wps_enable
	wifi_wps_disable
	wifi_wps_start
	wifi_set_wps_cb

	Upgrade APIs
	system_upgrade_flag_check
	system_upgrade_flag_set
	system_upgrade_reboot
	system_upgrade_start
	system_upgrade_userbin_check
	wifi_promiscuous_enable
	wifi_promiscuous_set_mac
	wifi_promiscuous_rx_cb
	wifi_get_channel
	wifi_set_channel

	Smart config APIs
	smartconfig_start
	smartconfig_stop

	SNTP API
	sntp_setserver
	sntp_getserver
	sntp_setservername
	sntp_getservername
	sntp_init
	sntp_stop
	sntp_get_current_timestamp
	sntp_get_real_time
	sntp_set_timezone
	sntp_get_timezone

	Generic TCP/UDP APIs
	espconn_delete
	espconn_dns_setserver
	espconn_gethostbyname
	espconn_port
	espconn_regist_sentcb
	espconn_regist_recvcb
	espconn_send
	espconn_sendto
	ipaddr_addr
	IP4_ADDR
	IP2STR

	TCP APIs
	espconn_abort
	espconn_accept
	espconn_get_connection_info
	espconn_connect
	espconn_disconnect
	espconn_regist_connectcb
	espconn_regist_disconcb
	espconn_regist_reconcb
	espconn_regist_write_finish
	espconn_set_opt
	espconn_clear_opt
	espconn_regist_time
	espconn_set_keepalive
	espconn_get_keepalive
	espconn_secure_accept
	espconn_secure_ca_disable
	espconn_secure_ca_enable
	espconn_secure_set_size
	espconn_secure_get_size
	espconn_secure_delete
	espconn_secure_connect
	espconn_secure_send
	espconn_secure_disconnect
	espconn_tcp_get_max_con
	espconn_tcp_set_max_con
	espconn_tcp_get_max_con_allow
	espconn_tcp_set_max_con_allow
	espconn_recv_hold
	espconn_recv_unhold

	UDP APIs
	espconn_create
	espconn_igmp_join
	espconn_igmp_leave

	ping APIs
	ping_start
	ping_regist_recv
	ping_regist_sent

	mDNS APIs
	espconn_mdns_init
	espconn_mdns_close
	espconn_mdns_server_register
	espconn_mdns_server_unregister
	espconn_mdns_get_servername
	espconn_mdns_set_servername
	espconn_mdns_set_hostname
	espconn_mdns_get_hostname
	espconn_mdns_disable
	espconn_mdns_enable

	GPIO – ESP32
	gpio_config
	gpio_get_level
	gpio_intr_enable
	gpio_intr_disable
	gpio_isr_register
	gpio_set_direction
	gpio_set_intr_type
	gpio_set_level
	gpio_set_pull_mode
	gpio_wakeup_enable
	gpio_wakeup_disable

	GPIO – ESP8266
	PIN_PULLUP_DIS
	PIN_PULLUP_EN
	PIN_FUNC_SELECT
	GPIO_ID_PIN
	GPIO_OUTPUT_SET
	GPIO_DIS_OUTPUT
	GPIO_INPUT_GET
	gpio_output_set
	gpio_input_get
	gpio_intr_handler_register
	gpio_pin_intr_state_set
	gpio_intr_pending
	gpio_intr_ack
	gpio_pin_wakeup_enable
	gpio_pin_wakeup_disable

	UART APIs
	UART_CheckOutputFinished
	UART_ClearIntrStatus
	UART_ResetFifo
	UART_SetBaudrate
	UART_SetFlowCtrl
	UART_SetIntrEna
	UART_SetLineInverse
	UART_SetParity
	UART_SetPrintPort
	UART_SetStopBits
	UART_SetWordLength
	UART_WaitTxFifoEmpty
	uart_init
	uart0_tx_buffer
	uart0_sendStr
	uart0_rx_intr_handler

	I2C Master APIs
	i2c_master_checkAck
	i2c_master_getAck
	i2c_master_gpio_init
	i2c_master_init
	i2c_master_readByte
	i2c_master_send_ack
	i2c_master_send_nack
	i2c_master_setAck
	i2c_master_start
	i2c_master_stop
	i2c_master_writeByte

	SPI APIs
	cache_flush
	spi_lcd_9bit_write
	spi_mast_byte_write
	spi_byte_write_espslave
	spi_slave_init
	spi_slave_isr_handler
	hspi_master_readwrite_repeat
	spi_test_init

	PWM APIs
	pwm_init
	pwm_start
	pwm_set_duty
	pwm_get_duty
	pwm_set_period
	pwm_get_period
	get_pwm_version
	set_pwm_debug_en(uint8 print_en)
	Bit twiddling

	Non Volatile Storage
	nvs_close
	nvs_commit
	nvs_dump
	nvs_erase_all
	nvs_erase_key
	nvs_flash_init
	nvs_get_blob
	nvs_get_str
	nvs_get_i8
	nvs_get_i16
	nvs_get_i32
	nvs_get_i64
	nvs_get_u8
	nvs_get_u16
	nvs_get_u32
	nvs_get_u64
	nvs_open
	nvs_set_blob
	nvs_set_str
	nvs_set_i8
	nvs_set_i16
	nvs_set_i32
	nvs_set_i64
	nvs_set_u8
	nvs_set_u16
	nvs_set_u32
	nvs_set_u64

	ESP Now
	esp_now_add_peer
	esp_now_deinit
	esp_now_del_peer
	esp_now_get_peer_key
	esp_now_get_peer_role
	esp_now_get_self_role
	esp_now_init
	esp_now_register_recv_cb
	esp_now_register_send_cb
	esp_now_send
	esp_now_set_kok
	esp_now_set_peer_role
	esp_now_set_peer_key
	esp_now_set_self_role
	esp_now_unregister_recv_cb
	esp_now_unregister_send_cb

	SPIFFS
	esp_spiffs_deinit
	esp_spiffs_init
	SPIFFS_check
	SPIFFS_clearerr
	SPIFFS_close
	SPIFFS_closedir
	SPIFFS_creat
	SPIFFS_erase_deleted_block
	SPIFFS_errno
	SPIFFS_fflush
	SPIFFS_format
	SPIFFS_fremove
	SPIFFS_fstat
	SPIFFS_gc
	SPIFFS_gc_quick
	SPIFFS_info
	SPIFFS_lseek
	SPIFFS_mount
	SPIFFS_mounted
	SPIFFS_open
	SPIFFS_open_by_dirent
	SPIFFS_opendir
	SPIFFS_read
	SPIFFS_readdir
	SPIFFS_remove
	SPIFFS_rename
	SPIFFS_stat
	SPIFFS_unmount
	SPIFFS_write

	Lib-C
	atoi
	atol
	bzero
	calloc
	free
	malloc
	memcmp
	memcpy
	memmove
	memset
	os_get_random
	os_random
	printf
	puts
	rand
	realloc
	snprintf
	sprintf
	strcat
	strchr
	strcmp
	strcpy
	strcspn
	strdup
	strlen
	strncat
	strncmp
	strncpy
	strrchr
	strspn
	strstr
	strtok
	strtok_r
	strtol
	zalloc

	Data structures
	esp_spiffs_config
	station_config
	struct softap_config
	struct station_info
	struct dhcps_lease
	struct bss_info
	struct ip_info
	struct rst_info
	struct espconn
	esp_tcp
	esp_udp
	struct ip_addr
	ipaddr_t
	struct ping_option
	struct ping_resp
	struct mdns_info
	enum phy_mode
	GPIO_INT_TYPE
	System_Event_t
	espconn error codes
	STATUS

	Reference materials
	C++ Programming
	Simple class definition
	Lambda functions
	Ignoring warnings

	Eclipse
	ESPFS breakdown
	EspFsInit
	espFsOpen
	espFsClose
	espFsFlags
	espFsRead
	mkespfimage

	ESPHTTPD breakdown
	httpdInit
	httpdGetMimetype
	httpdUrlDecode
	httpdStartResponse
	httpdSend
	httpdRedirect
	httpdHeader
	httpdGetHeader
	httpdFindArg
	httpdEndHeaders

	Makefiles
	Forums
	Reference documents
	Github
	Github quick cheats

	SDK

	Single board computer comparisons
	Heroes
	Max Filippov – jcmvbkbc – GCC compiler for Xtensa
	Ivan Grokhotkov – igrr – Arduino IDE for ESP8266 development
	jantje – Arduino Eclipse
	Richard Sloan – ESP8266 Community owner
	Mikhail Grigorev – CHERTS – Eclipse for ESP8266 development
	Mmiscool – Basic Interpreter

	Areas to Research

